Skip to main content
Log in

Interfacial self-adhesion of polyethylene blends: the role of long chain branching and extensional rheology

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The interfacial self-adhesion strength of polyethylene (PE) binary blends in temperatures higher than the melting point was investigated in relation to their components’ structures and elongational rheological properties. Four binary blends were prepared from the combination of a conventional polyethylene; LDPE or Ziegler-Natta LLDPE, with a metallocene catalyzed ethylene α-olefin copolymer; linear (Linear-m) or long chain branched (LCB-m). Interfacial adhesion was carried out by bringing two films into intimate contact under slight pressure and heat for 0.5 s. Adhesion strength was then measured by peeling immediately after sealing while the adherents were still in the molten state. Blending metallocene in 20, 40, and 60 wt% compositions with conventional PEs enhanced the self-adhesion. However, the adhesion strength of the blends containing 60 wt% metallocene resins was significantly lower than the adhesion strength of neat metallocene resins. This was interpreted to be due to the formation of a segregated layer of highly branched short chains of LDPE or Zn-LLDPE at the surface of films. The increase in adhesion strength of LDPE/Linear-m and Zn-LLDPE/Linear-m blends was more than LDPE/LCB-m and Zn-LLDPE/LCB-m blends. This was attributed to the faster reptation of linear chains, hence superior diffusion across the interface compared to LCB containing resin. The higher increase of adhesion strength for all compositions of LDPE blends was observed compared to their Zn-LLDPE counterparts. The temperature range in which the film showed a plateau of its highest adhesion strength was determined for all blend compositions. The results indicated that the temperature window of plateau adhesion strength for LDPE blends were broader than their Zn-LLDPE counterparts. Therefore, this work suggests that the final plateau temperature (T pf ) can be correlated with the area under stress–strain curve of the extensional rheological measurements, which is called toughness. Then, the higher melt toughness can result in a broader adhesion strength plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Basin VE (1967) Role of diffusion in the formation of adhesion bonds between polymers. Polymer Mech 3(5):561–63. doi:10.1007/BF00859242

    Article  Google Scholar 

  • Bensason S, Minick J, Moet A, Chum S, Hiltner A, Baer E (1996) Classification of homogeneous ethylene-octene copolymers based on comonomer content. J Polym Sci B Polym Phys 34(7):1301–15. doi:10.1002/(SICI)1099-0488(199605)34:7<1301::AID-POLB12>3.0.CO;2-E

    Article  Google Scholar 

  • Boiko YM, Guérin G, Marikhin VA, Prud’homme RE (2001) Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature. Polymer 42(21):8695–8702. doi:10.1016/S0032-3861(01)00406-2

    Article  Google Scholar 

  • Brown HR (1991) The adhesion between polymers. Annu Rev Mater Sci 21(1):463–89. doi:10.1146/annurev.ms.21.080191.002335

    Article  Google Scholar 

  • Brydson JA (1999) Plastics Materials. Butterworth-Heinemann

  • Bubeck RA (2002) Structure–property relationships in metallocene polyethylenes. Mater Sci Eng R Reports 39(1):1–28. doi:10.1016/S0927-796X(02)00074-8

    Article  Google Scholar 

  • Chen X, Costeux C, Larson RG (2010) Characterization and prediction of long-chain branching in commercial polyethylenes by a combination of rheology and modeling methods. J Rheumatol (1978-Present) 54(6):1185–1205. doi:10.1122/1.3479044

    Google Scholar 

  • Delgadillo-Velázquez O, Hatzikiriakos SG, Sentmanat M (2008) Thermorheological properties of LLDPE/LDPE blends: effects of production technology of LLDPE. J Polym Sci B Polym Phys 46(16):1669–83. doi:10.1002/polb.21504

    Article  Google Scholar 

  • Fang Y, Carreau PJ, Lafleur PG (2005a) Thermal and rheological properties of mLLDPE/LDPE blends. Polym Eng Sci 45(9):1254–64. doi:10.1002/pen.20401

    Article  Google Scholar 

  • Fang Y, Carreau PJ, Lafleur PG, Ymmel S (2005b) Properties of mLLDPE/LDPE blends in film blowing. Polym Eng Sci 45(3):343–53

    Article  Google Scholar 

  • Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26(6):895–944. doi:10.1016/S0079-6700(01)00011-9

    Article  Google Scholar 

  • Ganapathy R, Sood AK (2006) Tuning rheochaos by temperature in wormlike micelles. Langmuir 22(26):11016–21. doi:10.1021/la0622020

    Article  Google Scholar 

  • Gent AN, Kim E-G, Ye P (1997) Autohesion of crosslinked polyethylene. J Polym Sci B Polym Phys 35(4):615–22. doi:10.1002/(SICI)1099-0488(199703)35:4<615::AID-POLB9>3.0.CO;2-O

    Article  Google Scholar 

  • Hameed T, Hussein IA (2002) Rheological study of the influence of MW and comonomer type on the miscibility of M-LLDPE and LDPE blends. Polymer 43(25):6911–29

    Article  Google Scholar 

  • Hassan A (2007) Effect of bar sealing parameter on OPP/MCPP heat seal strength. Express Polymer Letter 1(11):773–79

    Article  Google Scholar 

  • Hill MJ, Barham PJ (2000) Morphology maps of binary blends of copolymers produced using the metallocene catalyst process. Polymer 41(4):1621–25. doi:10.1016/S0032-3861(99)00358-4

    Article  Google Scholar 

  • Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32(1):65–73

    Article  Google Scholar 

  • Hosoda S, Nozue Y, Kawashima Y, Suita K, Seno S, Nagamatsu T, Wagener KB et al (2011) Effect of the sequence length distribution on the lamellar crystal thickness and thickness distribution of polyethylene: perfectly equisequential ADMET polyethylene vs ethylene/α-olefin copolymer. Macromolecules 44(2):313–19. doi:10.1021/ma102072p

    Article  Google Scholar 

  • Hussein IA, Hameed T (2005) Influence of branching characteristics on thermal and mechanical properties of Ziegler-Natta and metallocene hexene linear low-density polyethylene blends with low-density polyethylene. J Appl Polym Sci 97(6):2488–98

    Article  Google Scholar 

  • Hussein IA, Hameed T, Abu BF, Mezghani KS (2003) Miscibility of hexene-LLDPE and LDPE blends: influence of branch content and composition distribution. Polymer 44(16):4665–72

    Article  Google Scholar 

  • Janicek M, Cermak R, Obadal M, Piel C, Ponizil P (2011) Ethylene copolymers with crystallizable side chains. Macromolecules 44(17):6759–66. doi:10.1021/ma201017m

    Article  Google Scholar 

  • Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci 16(1):204–10. doi:10.1007/BF00552073

    Article  Google Scholar 

  • Kasehagen LJ, Macosko CW (1998) Nonlinear shear and extensional rheology of long-chain randomly branched polybutadiene. J Rheol (1978-Present) 42(6):1303–27. doi:10.1122/1.550892

    Article  Google Scholar 

  • Kausch HH, Tirrell M (1989) Polymer interdiffusion. Annu Rev Mater Sci 19(1):341–77. doi:10.1146/annurev.ms.19.080189.002013

    Article  Google Scholar 

  • Kausch HH, Nguyen TQ, Petrovska-Delacrétaz D (1991) Chain interdiffusion: macromolecules between rouse and de gennes. Phys Scr 1991(T35):57. doi:10.1088/0031-8949/1991/T35/012

    Article  Google Scholar 

  • Kim KD, Sperling LH, Klein A, Hammouda B (1994) Reptation time, temperature, and cosurfactant effects on the molecular interdiffusion rate during polystyrene latex film formation. Macromolecules 27(23):6841–50. doi:10.1021/ma00101a024

    Article  Google Scholar 

  • Kuwabara K, Kaji H, Horii F, Bassett DC, Olley RH (1997) Solid-state 13C NMR analyses of the crystalline-noncrystalline structure for metallocene-catalyzed linear low-density polyethylene. Macromolecules 30(24):7516–21. doi:10.1021/ma970581l

    Article  Google Scholar 

  • Léger L, Creton C (2008) Adhesion mechanisms at soft polymer interfaces. Philos Trans R Soc A Math Phys Eng Sci 366(1869):1425–42. doi:10.1098/rsta.2007.2166

    Article  Google Scholar 

  • Lin G-G, Shih H-H, Chai P-C, Hsu S-J (2002) Influence of side-chain structures on the viscoelasticity and elongation viscosity of polyethylene melts. Polym Eng Sci 42(11):2213–21. doi:10.1002/pen.11111

    Article  Google Scholar 

  • Magonov S, Godovsky Y (1999) Atomic force microscopy, part 8: visualization of granular nanostructure in crystalline polymers. Am Lab 31(8):52–58

    Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the Pom-Pom polymer. J Rheol 42(1):81. doi:10.1122/1.550933

    Article  Google Scholar 

  • Meka P, Stehling FC (1994) Heat sealing of semicrystalline polymer films. I. Calculation and measurement of interfacial temperatures: effect of process variables on seal properties. J Appl Polym Sci 51(1):89–103

    Article  Google Scholar 

  • Morris BA (2002) Predicting the heat seal performance of ionomer films. J Plastic Film and Sheeting 18(3):157–67. doi:10.1177/8756087902018003002

    Article  Google Scholar 

  • Najarzadeh, Zahra, and Abdellah Ajji. 2014. “A Novel Approach toward the Effect of Seal Process Parameters on Final Seal Strength and Microstructure of LLDPE.” Journal of Adhesion Science and Technology

  • O’Connor AE, Macosko CW (2002) Melt versus solvent coating: structure and properties of block–copolymer-based pressure-sensitive adhesives. J Appl Polym Sci 86(13):3355–67. doi:10.1002/app.11300

    Article  Google Scholar 

  • Prager S, Tirrell M (1981) The healing process at polymer–polymer interfaces. J Chem Phys 75(10):5194–98. doi:10.1063/1.441871

    Article  Google Scholar 

  • Qureshi NZ, Rogunova M, Stepanov EV, Capaccio G, Hiltner A, Baer E (2001) Self-adhesion of polyethylene in the melt. 2. Comparison of heterogeneous and homogeneous copolymers. Macromolecules 34(9):3007–17

    Article  Google Scholar 

  • Rana D, Cho K, Woo T, Lee BH, Choe S (1999) Blends of ethylene 1‐octene copolymer synthesized by Ziegler–Natta and metallocene catalysts. I. Thermal and mechanical properties. J Appl Polym Sci 74(5):1169–77. doi:10.1002/(SICI)1097-4628(19991031)74:5<1169::AID-APP13>3.0.CO;2-W

    Article  Google Scholar 

  • Rana D, Kim HL, Kwag H, Choe S (2000a) Hybrid blends of similar ethylene 1-octene copolymers. Polymer 41(19):7067–82. doi:10.1016/S0032-3861(00)00066-5

    Article  Google Scholar 

  • Rana D, Kim HL, Kwag H, Rhee J, Cho K, Woo T, Lee BH, Choe S (2000b) Blends of ethylene 1‐octene copolymer synthesized by Ziegler–Natta and metallocene catalysts. II. Rheology and morphological behaviors. J Appl Polym Sci 76(13):1950–64. doi:10.1002/(SICI)1097-4628(20000624)76:13<1950::AID-APP13>3.0.CO;2-8

    Article  Google Scholar 

  • Robledo N, Vega JF, Nieto J, Martínez-Salazar J (2009) The role of the interface in melt linear viscoelastic properties of LLDPE/LDPE blends: effect of the molecular architecture of the matrix. J Appl Polym Sci 114(1):420–29. doi:10.1002/app.30422

    Article  Google Scholar 

  • Roland CM, Boehm GGA (1985) Macromolecular diffusion and the autoadhesion of polybutadiene. Macromolecules 18(6):1310–14. doi:10.1021/ma00148a046

    Article  Google Scholar 

  • Schach R, Creton C (2008) Adhesion at interfaces between highly entangled polymer melts. J Rheol 52(3):749–67. doi:10.1122/1.2901231

    Article  Google Scholar 

  • Shih H-H, Hamed GR (1997) Peel adhesion and viscoelasticity of poly(ethylene-Co-vinyl acetate)-based hot melt adhesives. I. The effect of tackifier compatibility. J Appl Polym Sci 63(3):323–31. doi:10.1002/(SICI)1097-4628(19970118)63:3<323::AID-APP7>3.0.CO;2-P

    Article  Google Scholar 

  • Shih HH, Wong CM, Wang YC, Huang CJ, Wu CC (1999) Hot tack of metallocene catalyzed polyethylene and Low-density polyethylene blend. J Appl Polym Sci 73(9):1769–73

    Article  Google Scholar 

  • Smith GD, Plummer CJG, Bourban P-E, Månson J-AE (2001) Non-isothermal fusion bonding of polypropylene. Polymer 42(14):6247–57. doi:10.1016/S0032-3861(01)00060-X

    Article  Google Scholar 

  • Stehling FC, Meka P (1994) Heat sealing of semicrystalline polymer films. II. Effect of melting distribution on heat-sealing behavior of polyolefins. J Appl Polym Sci 51(1):105–19

    Article  Google Scholar 

  • Su GM, Best K, Ranganathan T, Emrick T, Crosby AJ (2011) Tailored nanoparticles for enhancing polymer adhesion. Macromolecules 44(13):5256–61. doi:10.1021/ma200561g

    Article  Google Scholar 

  • Tabatabaei SH, Carreau PJ, Ajji A (2009) Rheological and thermal properties of blends of a long-chain branched polypropylene and different linear polypropylenes. Chem Eng Sci 64(22):4719–31. doi:10.1016/j.ces.2009.04.009

    Article  Google Scholar 

  • Tetsuya T, Ishiaku US, Mizoguchi M, Hamada H (2005) The effect of heat sealing temperature on the properties of OPP/CPP heat seal. I. Mechanical properties. J Appl Polym Sci 97(3):753–60

    Article  Google Scholar 

  • Wagner MH, Kheirandish S, Yamaguchi M (2004) Quantitative analysis of melt elongational behavior of LLDPE/LDPE blends. Rheol Acta 44(2):198–218. doi:10.1007/s00397-004-0400-9

    Article  Google Scholar 

  • Wool, Richard P. 1995. Polymer Interfaces: Structure and Strength. Hanser-Gardner Publications

  • Wool RP, Yuan B-L, McGarel OJ (1989) Welding of polymer interfaces. Polym Eng Sci 29(19):1340–67. doi:10.1002/pen.760291906

    Article  Google Scholar 

  • Xue Y-Q, Tervoort TA, Lemstra PJ (1998) Welding behavior of semicrystalline polymers. 1. The effect of nonequilibrium chain conformations on autoadhesion of UHMWPE. Macromolecules 31(9):3075–80

    Article  Google Scholar 

  • Xue Y-Q, Tervoort TA, Rastogi S, Lemstra J (2000) Welding behavior of semicrystalline polymers. 2. Effect of cocrystallization on autoadhesion. Macromolecules 33(19):7084–87. doi:10.1021/ma000754y

    Article  Google Scholar 

Download references

Acknowledgment

Financial support from 3S Pack NSERC/Saputo/Prolamina industrial research chair is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Ajji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najarzadeh, Z., Ajji, A. & Bruchet, JB. Interfacial self-adhesion of polyethylene blends: the role of long chain branching and extensional rheology. Rheol Acta 54, 377–389 (2015). https://doi.org/10.1007/s00397-015-0843-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-015-0843-1

Keywords

Navigation