Advertisement

Rheologica Acta

, Volume 53, Issue 9, pp 725–739 | Cite as

Experimental study on the capillary thinning of entangled polymer solutions

  • Dirk Sachsenheimer
  • Bernhard Hochstein
  • Norbert Willenbacher
Original Contribution

Abstract

The transient elongation behavior of entangled polymer and wormlike micelles (WLM) solutions has been investigated using capillary breakup extensional rheometry (CaBER). The transient force ratio X = 0.713 reveals the existence of an intermediate Newtonian thinning region for polystyrene and WLM solutions prior to the viscoelastic thinning. The exponential decay of X(t) in the first period of thinning defines an elongational relaxation time λ x which is equal to elongational relaxation time λ e obtained from exponential diameter decay D(t) indicating that the initial stress decay is controlled by the same molecular relaxation process as the strain hardening observed in the terminal regime of filament thinning. Deviations in true and apparent elongational viscosity are discussed in terms of X(t). A minimum Trouton ratio is observed which decreases exponentially with increasing polymer concentration leveling off at Trmin = 3 for the solutions exhibiting intermediate Newtonian thinning and Trmin ≈ 10 otherwise. The relaxation time ratio λ e/ λ s, where λ s is the terminal shear relaxation time, decreases exponentially with increasing polymer concentration and the data for all investigated solutions collapse onto a master curve irrespective of polymer molecular weight or solvent viscosity when plotted versus the reduced concentration c[ η], with [ η] being the intrinsic viscosity. This confirms the strong effect of the nonlinear deformation in CaBER experiments on entangled polymer solutions as suggested earlier. On the other hand, λ eλ s is found for all WLM solutions clearly indicating that these nonlinear deformations do not affect the capillary thinning process of these living polymer systems.

Keywords

CaBER Filament stretching Polymer solution Wormlike micelles Elongational viscosity Relaxation time 

Notes

Acknowledgments

The authors would like to thank Sonja Müller, Sebastian Bindgen, and Frank Bossler for their help in sample preparation and performing the experiments.We would like to thank Jonathan Rothstein and Sunil Khandavalli (University of Massachusetts) for the possibility to use the FiSER setup and for all help given. Financial support by German Research Foundation DFG grant WI 3138/13-1 is gratefully acknowledged.

References

  1. Ameri David RL, Wei MH, Kornfield JA (2009) Effects of pairwise, donor–acceptor functional groups on polymer solubility, solution viscosity and mist control. Polymer 50 (26):6323–6330CrossRefGoogle Scholar
  2. Anna SL, McKinley GH (2001a) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45:115–138CrossRefGoogle Scholar
  3. Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF (2001b) An inter-laboratory comparison of measurements from filament stretching rheometers using common test fluids. J Rheol 45:83–114CrossRefGoogle Scholar
  4. Anna SL, Rogers C, McKinley GH (1999) On controlling the kinematics of a filament stretching rheometer using a real-time active control mechanism. J Non-Newton Fluid Mech 87:307–335CrossRefGoogle Scholar
  5. Arnolds O, Buggisch H, Sachsenheimer D, Willenbacher N (2010) Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethylene oxide (PEO) solutions. Rheol Acta 49:1207–1217CrossRefGoogle Scholar
  6. Arratia PE, Cramer LA, Gollub JP, Durian DJ (2009) The effects of polymer molecular weight on filament thinning and drop breakup in microchannels. New Jour of Phys 11:115–006Google Scholar
  7. Bach A, Rasmussen HK, Hassager O (2003) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47 (2):429–441CrossRefGoogle Scholar
  8. Bazilevskii AV, Entov VM et al (1997) Failure of polymer solution filaments. Polym Sci A 39:316–324Google Scholar
  9. Bazilevsky AV, Entov VM, Rozhkov AN (1990) Liquid filament microrheometer and some of its applications. In: Oliver DR (ed) conference, Third European rheology. Elsevier, San Diego, pp 41–43Google Scholar
  10. Bazilevsky AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci Ser A 43:716–726Google Scholar
  11. Becerra M, Carvalho MS (2011) Stability of viscoelastic liquid curtain. Eng and Proc 50:445–449CrossRefGoogle Scholar
  12. Berret JF, Appell J, Porte G (1993) Linear rheology of entangled wormlike micelles. Langmuir 9:2851–2854CrossRefGoogle Scholar
  13. Bhardwaj A, Miller E, Rothstein JP (2007a) Filament stretching and capillary breakup extensional rheometry measurements of viscoelastic wormlike micelle solutions. J Rheol 51:693–719CrossRefGoogle Scholar
  14. Bhardwaj A, Richter D, Chellamuthu M, Rothstein JP (2007b) The effect of preshear on the extensional rheology of wormlike micelle solutions. Rheol Acta 46:861–875CrossRefGoogle Scholar
  15. Bischoff White EE, Chellamuthu M, Rothstein JP (2010) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49:119–129CrossRefGoogle Scholar
  16. Böhme G (2000) Strömungsmechanik nichtnewtonischer Fluide. Teuber, StuttgartCrossRefGoogle Scholar
  17. Brenner M, Lister J, Stone H (1996) Pinching threads, singularities and the number 0.0304. Phys Fluids 8:2827–2836CrossRefGoogle Scholar
  18. Campo-Deaño L, Clasen C (2010) The slow retraction method (SRM) for the determination of ultra-sort relaxation times in capillary breakup extensional rheometry experiments. J Non-Newton Fluid Mech 165:1688–1699CrossRefGoogle Scholar
  19. Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20:2289–2296CrossRefGoogle Scholar
  20. Cates ME (1988) Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution. J Phys France 49 (9):1593–1600CrossRefGoogle Scholar
  21. Cates ME (1996) Dynamics of living polymers and flexible surfactant micelles: scaling laws for dilution. J Phys France 49 (9):1593–1600Google Scholar
  22. Chellamuthu M, Rothstein JP (2008) Distinguishing between linear and branched wormlike micelle solutions using extensional rheology measurements. J Rheol 52:865–884CrossRefGoogle Scholar
  23. Chen L, Bromberg L, Hatton TA, Rutledge GC (2008). Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide 49 (5):1266–1275Google Scholar
  24. Christanti Y, Walker LM (2001) Surface tension driven jet break up of strain-hardening polymer solutions. J Non-Newtonian Fluid Mech 100:9–26CrossRefGoogle Scholar
  25. Christanti Y, Walker LM (2002) Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance. J Rheol 46:733–748CrossRefGoogle Scholar
  26. Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006a) The beads on-string structure of viscoelastic threads. J Fluid Mech 556:283–308CrossRefGoogle Scholar
  27. Clasen C, Plog JP, et al. (2006b) How dilute are dilute solutions in extensional flows J Rheol 50:849–881CrossRefGoogle Scholar
  28. Clasen C (2010) Capillary breakup extensional rheometry of semi-dilute polymer solutions. K-A Rheol J 22:331–338Google Scholar
  29. Cromer M, Cook PL, McKinley GH (2009) Extensional flow of wormlike micellar solutions. Chem Eng Science 64:4588–4596CrossRefGoogle Scholar
  30. Eggers J (1993) Universal pinching of 3D axisymmetric free-surface flows. Phys Rev Lett 71:3458–3490CrossRefGoogle Scholar
  31. Eggers J (1997) Nonlinear dynamics and breakup of free-surface fows. Rev Mod Phys 69:865–930Google Scholar
  32. Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newton Fluid Mech 72:31–53CrossRefGoogle Scholar
  33. Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanolitre biopolymer samples: non-Newtonian flow phenomena of carnivorous plant mucilage. Soft Matter 7:10889–10898CrossRefGoogle Scholar
  34. Germann N, Cook LP, Beris AN (2013) Nonequilibrium thermodynamic modeling of the structure and rheology of concentrated wormlike micellar solutions. J Non-Newton Fluid Mech 196:51–57CrossRefGoogle Scholar
  35. Gier S, Wagner C (2012) Visualization of the flow profile inside a thinning filament during capillary breakup of a polymer solution via particle image velocimetry and particle tracking velocimetry. Phys Fluids 24:053–102CrossRefGoogle Scholar
  36. Haward SJ, McKinley GH (2012b) Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment. Phys Rev E 85:031–502CrossRefGoogle Scholar
  37. Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13 (5):1688–1699CrossRefGoogle Scholar
  38. Kheirandish S, Gubaydullin I, Willenbacher N (2008) Shear and elongational flow behaviour of acrylic thickener solutions. Part I: effect of intermolecular aggregation. Rheol Acta 49:397–407Google Scholar
  39. Kheirandish S, Guybaidullin I et al (2009) Shear and elongational flow behavior of acrylic thickener solutions, Part II: effect of gel content. Rheol Acta 48:397–407CrossRefGoogle Scholar
  40. Kim NJ, Pipe CJ, Ahn KH, Lee SJ, McKinley GH (2010) Capillary breakup extensional rheometry of a wormlike micellar solution. Korea-Aust Rheol J 22:31–41Google Scholar
  41. Klein CO, Naue IF et al (2009) Addition of the force measurement capability to a commercially available extensional rheometer (CaBER). Soft Mater 7:242–257CrossRefGoogle Scholar
  42. Kolte MI, Rasmussen HK, Hassager O (1997) Transient filament stretching rheometer II: numerical simulation. Rheol Acta 36:285–302Google Scholar
  43. Kolte MI, Szabo P (1999) Capillary thinning of polymeric filaments. J Rheol 43:609–626CrossRefGoogle Scholar
  44. Liang RF, Mackley MR (1994) Rheological characterization of the time and strain dependence for polyisobutylene solutions. J Non-Newton Fluid Mech 52:387–405CrossRefGoogle Scholar
  45. Ma W K A, Chinesta F, Tuladhar T, Mackley MR (2008) Filament stretching of carbon nano tube suspension. Rheol Acta 47:447–457CrossRefGoogle Scholar
  46. Martinie L, Buggisch H, Willenbacher N (2013) Apparent elongational yield stress of soft matter. J Rheol 57:627–646CrossRefGoogle Scholar
  47. McKinley GH (2005) Visco-elasto-capillary thinning and breakup of complex fluid. Rheology Reviews 2005. The British Soc Rheol:1–49Google Scholar
  48. McKinley GH, Brauner O, Yao M (2001) Kinematics of filament stretching in dilute and concentrated polymer solutions. Korea-Australia Rheol J 13 (1):29–35Google Scholar
  49. McKinley GH, Sridhar T (2002) Filament stretching rheometry. Annu Rev Fluid Mech 34:375–415CrossRefGoogle Scholar
  50. McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44 (3):653–670CrossRefGoogle Scholar
  51. Miller E, Cooper-White J (2009) The effects of chain conformation in the microfluidic entry flow of polymer-surfactant systems. Non-Newtonian Fluid Mech 160:22–30CrossRefGoogle Scholar
  52. Münstedt H (1975) Viscoelasticity of polystyrene melts in tensile creep experiments. Rheol Acta 14:1077–1088CrossRefGoogle Scholar
  53. Münstedt H (1979) New universal extensional rheometer for polymer melts. J Rheol 23:421–436CrossRefGoogle Scholar
  54. Münstedt H, Kurzbeck S, Egersdörfer L (1998) Influence of molecular structure on rheological properties of polyethylenes Part II. Elongational behavior. Rheol Acta 37:21–29CrossRefGoogle Scholar
  55. Nelson WC, Kavehpour HP, Kim CJ (2011) A miniature capillary breakup extensional rheometer by electrostatically assisted generation of liquid filaments. Lab Chip 11:2424–2431CrossRefGoogle Scholar
  56. Niedzwiedz K, Arnolds O, Willenbacher N, Brummer R (2009) How to characterize yield stress fluids with capillary breakup extensional rheometry (CaBER). Appl Rheol 19:41969–1–41969–10Google Scholar
  57. Niedzwiedz K, Buggisch H, Willenbacher N (2010) Extensional rheology of concentrated emulsions as probed by capillary breakup elongational rheometry (CaBER). Rheol Acta 49:1103– 1116CrossRefGoogle Scholar
  58. Oliveira M S N, Yeh R, McKinley GH (2006) Iterated stretching, extensional rheology and formation of beads-on-string structures in polymer solutions. J Non-Newton Fluid Mech 137:137–148CrossRefGoogle Scholar
  59. Orr NV, Sridhar T (1999) Probing the dynamics of polymer solutions in extensional flow using step strain rate experiments. J Non-Newton Fluid Mech 82:203–232CrossRefGoogle Scholar
  60. Papageorgiou DT (1995) On the breakup of viscous liquids threads. Phys Fluids 7:1529–1544CrossRefGoogle Scholar
  61. Rathfon JM, Cohn RW, Crosby AJ, Rothstein JP, Tew GN (2011) Confinement effects on chain entanglement in free-standing polystyrene ultrathin films. Macromolecules 44 (13):5436–5442CrossRefGoogle Scholar
  62. Regeva O, Vandebrilb S, Zussmana E, Clasen C (2010) The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 50 (12):2611–2620CrossRefGoogle Scholar
  63. Rehage H, Hoffmann H (1988) Rheological Properties of Viscoelastic Surfactant Systems. J Physl Chem 92 (16):4712–4719CrossRefGoogle Scholar
  64. Renardy M (1994) Some comments on the surface tension driven breakup (or the lack of it) of the viscoelastic jets. J Non-Newton Fluid Mech 51:97–107CrossRefGoogle Scholar
  65. Renardy M (1995) A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J Non-Newton Fluid Mech 59:267–282CrossRefGoogle Scholar
  66. Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary breakup rheometry of low-viscosity elastic fluids. Appl Rheol 15 (1):12–27Google Scholar
  67. Rothstein JP (2003) Transient extensional rheology of wormlike micelle solutions. J Rheol 47:1227–1247CrossRefGoogle Scholar
  68. Rothstein JP, McKinley GH (2002a) A comparison of the stress and birefringence growth of dilute, semi-dilute and concentrated polymer solutions in uniaxial extensional flows. J Non-Newton Fluid Mech 108:275–290CrossRefGoogle Scholar
  69. Rothstein JP, McKinley GH (2002b) Inhomogeneous transient uniaxial extensional rheometry. J Rheol 46:1419–1443CrossRefGoogle Scholar
  70. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, OxfordGoogle Scholar
  71. Sachsenheimer D, Hochstein B, Buggisch H, Willenbacher N (2012) Determination of axial forces during the capillary breakup of liquid filaments - the tilted CaBER method. Rheol Acta 51:909–923CrossRefGoogle Scholar
  72. Sankaran AK, Rothstein JP (2012) Effect of viscoelasticity on liquid transfer during gravure printing. J Non-Newtonian Fluid Mech 175–176:64–75CrossRefGoogle Scholar
  73. Sattler R, Gier S, Eggers J, Wagner C (2012) The final stages of capillary break-up of polymer solutions. Phys Fluids 24:023– 101CrossRefGoogle Scholar
  74. Sattler R, Kityk A, Wagner C (2007) Molecular configurations in the droplet detachment process of a complex liquid. Phys Rev E 75:051805–1-051805-6CrossRefGoogle Scholar
  75. Schümmer P, Tebel K H (1983) A new elongational rheometer for polymer solutions. J Non-Newtonian Fluid Mech 12 (3):331– 347CrossRefGoogle Scholar
  76. Spiegelberg S, Ables D, McKinley GH (1996) Role of end-effects on measurements of extensional viscosity in viscoelastic polymer solutions with a filament stretching rheometer. J Non-Newt Fluid Mech 64 (2-3):229–267CrossRefGoogle Scholar
  77. Tan L, Pan J, Wan A (2012) Shear and extensional rheology of polyacrylonitrile solution: effect of ultrahigh molecular weight polyacrylonitrile. Colloid Polym Sci 290:289–295CrossRefGoogle Scholar
  78. Tembelya M, Vadillo D, Mackley MR, Soucemarianadin A (2012) The matching of a one-dimensional numerical simulation and experiment results for low viscosity Newtonian and non-Newtonian fluids during fast filament stretching and subsequent break-up. J Rheol 56:159–183CrossRefGoogle Scholar
  79. Tirtaatmadja V, McKinley GH, Cooper-White JJ (2006) Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys Fluids 18:043– 101CrossRefGoogle Scholar
  80. Tirtaatmadja V, Sridhar T (1993) Filament stretching device for measurement of extensional viscosity. J Rheol 36 (3):277–284Google Scholar
  81. Tropea C, Yarin AL, Foss JF (2007) Springer handbook of experimental fluid mechanics. Springer, HeidelbergCrossRefGoogle Scholar
  82. Tuladhar TR, Mackley MR (2008) Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and ink jets fluids. J Non-Newton Fluid Mech 148:97–108CrossRefGoogle Scholar
  83. Vadillo D, Mathues W, Clasen C (2012) Microsecond relaxation processes in shear and extensional flows of weakly elastic polymer solutions. Rheol Acta 51:755–769CrossRefGoogle Scholar
  84. Vadillo DC, Tuladhar TR, Mulji AC et al (2010) Evaluation of ink jet fluid’s performance using the Cambridge Trimaster filament stretch and breakup-device. J Rheol 54 (2):261–282CrossRefGoogle Scholar
  85. Vasquez PA, McKinley GH, Cooka LP (2007) A network scission model for wormlike micellar solutions I. Model formulation and viscometric flow predictions. J Non-Newtonian Fluid Mech 144:122–139CrossRefGoogle Scholar
  86. Yang J, Xu Y (2008) Coalescence of two viscoelastic droplets connected by a string. Phys Fluids 20:043101–1-043101-9Google Scholar
  87. Yesilata B, Clasen C, McKinley GH (2006) Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J Non-Newton Fluid Mech 133:73–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dirk Sachsenheimer
    • 1
  • Bernhard Hochstein
    • 1
  • Norbert Willenbacher
    • 1
  1. 1.Institute for Mechanical Process Engineering and Mechanics, Group Applied Mechanics (AME)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations