Skip to main content
Log in

Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological properties of sodium alginate in salt-free solutions were studied by steady shear, dynamic oscillatory and extensional measurements. This biopolymer consists of mannuronic and guluronic acid residues that give a polyelectrolyte character. We applied the scaling theories and checked their accordance with polyelectrolyte behaviour for low concentrations with a shift to neutral polymer behaviour at larger concentrations. This nature was supported by the effect of the concentration on the specific viscosity, the relaxation times from steady shear and the longest relaxation times from small amplitude oscillatory shear (SAOS) measurements. To analyze the extensional behaviour of the samples, we conducted a study of dimensionless numbers and time scales where filament thinning driven by viscous, capillary or elastic forces is at play. We conclude that an exponential filament thinning followed by breakup results in the best regimes that describe the experimental data. Besides, the data pointed out that alginate in salt-free concentrated solutions shows strain thinning of the extensional viscosity and chain rigidity, behaviours that cannot be inferred from the shear rheometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aleksandrov AP, Lazurkin YS (1940) A study of polymers. I. Highly elastic deformation of polymers. Rubber Chem Technol 13(4):886–898. doi:10.5254/1.3546566

    Article  Google Scholar 

  • Arnolds O, Buggisch H, Sachsenheimer D, Willenbacher N (2010) Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethyleneoxide (PEO) solutions. Rheol Acta 49(11–12):1207–1217. doi:10.1007/s00397-010-0500-7

    Article  Google Scholar 

  • Barnes HA (1989) Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366

    Article  Google Scholar 

  • Birnbaum DT, Brannon-Peppas L (2003) Microparticle drug delivery systems. Drug delivery systems in cancer therapy. Humana, Totowa

    Google Scholar 

  • Böhm N, Kulicke W-M (1999) Rheological studies of barley (1→3)(1→4)-β-glucan in concentrated solution: investigation of the viscoelastic flow behaviour in the sol-state. Carbohydr Res 315(3–4):293–301. doi:10.1016/S0008-6215(99)00035-X

    Article  Google Scholar 

  • Clasen C (2010) Capillary breakup extensional rheometry of semi-dilute polymer solutions. Korea-Australia Rheol J 22(4):331–338

    Google Scholar 

  • Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006a) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308

    Article  Google Scholar 

  • Clasen C, Plog JP, Kulicke WM, Owens M, MacOsko C, Scriven LE, Verani M, McKinley GH (2006b) How dilute are dilute solutions in extensional flows? J Rheol 50(6):849–881

    Article  Google Scholar 

  • Clasen C, Phillips PM, Palangetic L, Vermant J (2012) Dispensing of rheologically complex fluids: the map of misery. AIChE J 58(10):3242–3255. doi:10.1002/aic.13704

    Article  Google Scholar 

  • Colby R (2010) Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions. Rheol Acta 49(5):425–442. doi:10.1007/s00397-009-0413-5

    Article  Google Scholar 

  • Colby RH, Boris DC, Krause WE, Dou S (2007) Shear thinning of unentangled flexible polymer liquids. Rheol Acta 46(5):569–575. doi:10.1007/s00397-006-0142-y

    Article  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28(118):619–622. doi:10.1002/pol.1958.1202811812

    Article  Google Scholar 

  • Cross MM (1965) Rheology of non-Newtonian fluids: a new flow equation for pseudoplastic systems. J Colloid Sci 20(5):417–437. doi:10.1016/0095-8522(65)90022-x

    Article  Google Scholar 

  • DeGroot AR, Neufeld RJ (2001) Encapsulation of urease in alginate beads and protection from [alpha]-chymotrypsin with chitosan membranes. Enzym Microb Technol 29(6-7):321–327. doi:10.1016/s0141-0229(01)00393-3

    Article  Google Scholar 

  • Dobrynin AV, Colby RH, Rubinstein M (1995) Scaling theory of polyelectrolyte solutions. Macromolecules 28(6):1859–1871

    Article  Google Scholar 

  • Duxenneuner MR, Fischer P, Windhab EJ, Cooper-White JJ (2008) Extensional properties of hydroxypropyl ether guar gum solutions. Biomacromolecules 9(11):2989–2996. doi:10.1021/bm800553v

    Article  Google Scholar 

  • Eggers J, Villermaux E (2008) Physics of liquid jets. Reports on Progress in Physics, 71(3):036601

  • Entov VM (1986) Effect of elastic deformations in the flow of polymer solution. Heat Transf Soviet Res 18(1):60–73

    Google Scholar 

  • Entov VM, Hinch EJ (1997) Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. J Non-Newtonian Fluid Mech 72(1):31–53. doi:10.1016/S0377-0257(97)00022-0

    Article  Google Scholar 

  • Fuoss RM, Strauss UP (1949) The viscosity of mixtures of polyelectrolytes and simple electrolytes. Ann N Y Acad Sci 51(4):836–851. doi:10.1111/j.1749-6632.1949.tb27309.x

    Article  Google Scholar 

  • Gómez Díaz D, Navaza JM (2002) Caracterización reológica de dispersiones agua-alginato sódico con aplicación en la industria alimentaria. Ciencia y Tecnología Alimentaria 3(5):302–306

    Article  Google Scholar 

  • Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32(1):195–198. doi:10.1016/0014-5793(73)80770-7

    Article  Google Scholar 

  • Haug A, Smidsrød O (1962) Determination of intrinsic viscosity of alginates. Acta Chem Scand 16:1569–1578

    Article  Google Scholar 

  • Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699. doi:10.1021/bm300407q

    Article  Google Scholar 

  • Hilliou L, Freitas F, Oliveira R, Reis MAM, Lespineux D, Grandfils C, Alves VD (2009) Solution properties of an exopolysaccharide from a Pseudomonas strain obtained using glycerol as sole carbon source. Carbohydr Polym 78(3):526–532. doi:10.1016/j.carbpol.2009.05.011

    Article  Google Scholar 

  • Kheirandish S, Gubaydullin I, Willenbacher N (2009) Shear and elongational flow behavior of acrylic thickener solutions. Part II: effect of gel content. Rheol Acta 48(4):397–407. doi:10.1007/s00397-008-0324-x

    Article  Google Scholar 

  • Koch S, Schwinger C, Kressler J, Heinzen C, Rainov NG (2003) Alginate encapsulation of genetically engineered mammalian cells: comparison of production devices, methods and microcapsule characteristics. J Microencapsul Micro Nano Carriers 20(3):303–316

    Article  Google Scholar 

  • Kulicke WM, Clasen C, Lohman C (2005) Characterization of water-soluble cellulose derivatives in terms of the molar mass and particle size as well as their distribution. Macromol Symp 223(1):151–174. doi:10.1002/masy.200550511

    Article  Google Scholar 

  • Mancini M, Moresi M, Sappino F (1996) Rheological behaviour of aqueous dispersions of algal sodium alginates. J Food Eng 28(3–4):283–295. doi:10.1016/0260-8774(95)00068-2

    Article  Google Scholar 

  • McKinley GH (2005a) Dimensionless groups for understanding free surface flows of complex fluids. Soc Rheol Bull 74(2):6–10

    Google Scholar 

  • McKinley GH (2005b) Visco-elasto-capillary thinning and break-up of complex fluids. Hatsopoulos Microfluids Laboratory, Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA

  • Meadows J, Williams PA, Kennedy JC (1995) Comparison of the extensional and shear viscosity characteristics of aqueous hydroxyethyl cellulose solutions. Macromolecules 28(8):2683–2692. doi:10.1021/ma00112a013

    Article  Google Scholar 

  • Morris ER, Cutler AN, Ross-Murphy SB, Rees DA, Price J (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1(1):5–21. doi:10.1016/0144-8617(81)90011-4

    Article  Google Scholar 

  • Niedzwiedz K, Arnolds O, Willenbacher N, Brummer R (2009) Capillary Breakup Extensional Rheometry of Yield Stress Fluids. Appl Rheol 19(4):41969

  • Rioux LE, Turgeon SL, Beaulieu M (2007) Characterization of polysaccharides extracted from brown seaweeds. Carbohydr Polym 69(3):530–537. doi:10.1016/j.carbpol.2007.01.009

    Article  Google Scholar 

  • Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary break-up rheometry of low-viscosity elastic fluids. Appl Rheol 15:12–27

    Google Scholar 

  • Sachsenheimer D, Hochstein B, Buggisch H, Willenbacher N (2012) Determination of axial forces during the capillary breakup of liquid filaments—the tilted CaBER method. Rheol Acta 51:909–923

    Article  Google Scholar 

  • Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33(6):501–547. doi:10.1080/10408399309527645

    Article  Google Scholar 

  • Simeone M, Alfani A, Guido S (2004) Phase diagram, rheology and interfacial tension of aqueous mixtures of Na-caseinate and Na-alginate. Food Hydrocoll 18(3):463–470. doi:10.1016/j.foodhyd.2003.08.004

    Article  Google Scholar 

  • Smidsrød O (1970) Solution properties of alginate. Carbohydr Res 13(3):359–372. doi:10.1016/S0008-6215(00)80593-5

    Article  Google Scholar 

  • Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2000) Validation and application of a novel elongational device for polymer solutions. J Rheol 44(3):595–616

    Article  Google Scholar 

  • Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2002) Investigation of the elongational behavior of polymer solutions by means of an elongational rheometer. J Rheol 46(2):507–527

    Article  Google Scholar 

  • Storz H, Zimmermann U, Zimmermann H, Kulicke W-M (2010) Viscoelastic properties of ultra-high viscosity alginates. Rheol Acta 49(2):155–167. doi:10.1007/s00397-009-0400-x

    Article  Google Scholar 

  • Tirtaatmadja V, Sridhar T (1993) A filament stretching device for measurement of extensional viscosity. J Rheol 37(6):1081–1102

    Article  Google Scholar 

  • Tzoganakis C (1994) A rheological evaluation of linear and branched controlled-rheology polypropylenes. Can J Chem Eng 72(4):749–754. doi:10.1002/cjce.5450720425

    Article  Google Scholar 

  • Vadillo DC, Mathues W, Clasen C (2012) Microsecond relaxation processes in shear and extensional flows of weakly elastic polymer solutions. Rheol Acta 51(8):755–769

    Article  Google Scholar 

  • Venkatesan P, Manavalan R, Valliappan K (2009) Microencapsulation: a vital technique in novel drug delivery system. J Pharm Sci Res 1(4):26–35

    Google Scholar 

  • Wloka M, Rehage H, Flemming HC, Wingender J (2004) Rheological properties of viscoelastic biofilm extracellular polymeric substances and comparison to the behavior of calcium alginate gels. Colloid Polym Sci 282(10):1067–1076. doi:10.1007/s00396-003-1033-8

    Article  Google Scholar 

  • Xiao Q, Tong Q, Lim L-T (2012) Pullulan-sodium alginate based edible films: rheological properties of film forming solutions. Carbohydr Polym 87(2):1689–1695. doi:10.1016/j.carbpol.2011.09.077

    Article  Google Scholar 

  • Zimmermann U, Cramer H, Jork A, Thürmer F, Zimmermann H, Fuhr G, Hasse C, Rothmund M (2008) Microencapsulation-based cell therapy. In: Biotechnology. Wiley-VCH Verlag GmbH, pp 547-571. doi:10.1002/9783527620937.ch19

Download references

Acknowledgments

This research was supported by funds from the European Research Council (ERC). Project MYCAP (258984) STARTING GRANTS 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva M. Martín del Valle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Rivero, C., Hilliou, L., Martín del Valle, E.M. et al. Rheological characterization of commercial highly viscous alginate solutions in shear and extensional flows. Rheol Acta 53, 559–570 (2014). https://doi.org/10.1007/s00397-014-0780-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-014-0780-4

Keywords

Navigation