Skip to main content
Log in

Calibration of an optical tweezer microrheometer by sequential impulse response

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We report a robust method for calibrating optical tweezers in any viscoelastic medium. This approach uses two coupled measurements—one from a static experiment in which a trapped particle diffuses passively within the tweezer’s harmonic potential and another from a dynamic experiment in which the trap is jumped discontinuously to a new position while the particle undergoes transient relaxation back into the minimum of the optical potential. Together, these are sufficient to determine the stiffness of the trap in a material of unknown rheology. The method is tested in a Newtonian fluid and compares favorably with other means of calibration. The calibration is also performed in a non-Newtonian fluid of which standard optical tweezer calibration methods may struggle to characterize. The correctly calibrated optical tweezer microrheometer measures the rheology of polymer solutions in agreement with macrorheological measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • MacKintosh FC, Schmidt CF (1999) Microrheology. Curr Opin Colloid Interface Sci 4:300–307

    Article  CAS  Google Scholar 

  • Squires TM, Mason TG (2010) Fluid mechanics of microrheology. Annu Rev Fluid Mech 42:413–438

    Article  Google Scholar 

  • Furst EM (2005) Applications of laser tweezers in complex fluid rheology. Curr Opin Colloid Interface Sci 1:79–86

    Article  Google Scholar 

  • Brau RR, Ferrer JM, Lee H, Castro CE, Tam BK, Tarsa PB, Matsudaira P, Boyce MC, Kamm RD, Lang MJ (2007) Passive and active microrheology with optical tweezers. J Optics A 9:S103– S112

    Article  Google Scholar 

  • Mizuno D, Head DA, MacKintosh FC, Schmidt CF (2008) Active and passive microrheology in equilibrium and non-equilibrium systems. Macromolecules 41:7194–7207

    Article  CAS  Google Scholar 

  • Park BJ, Furst EM (2011) Attractive interactions between colloids at the oil-water interface. Soft Matter 7:7676–7682

    Article  CAS  Google Scholar 

  • Lele PP, Swan JW, Brady JF, Wagner NJ, Furst EM (2011) Colloidal diffusion and hydrodynamic screening near boundaries. Soft Matter 7:6844–6852

    Article  CAS  Google Scholar 

  • Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  CAS  Google Scholar 

  • Gittes F, Schmidt C (1998) Interference model for back-focal-plane displacement detection in optical tweezers. Opt Lett 23:7–9

    Article  CAS  Google Scholar 

  • Berg-Sørensen K, Oddershede LB, Florin EL, Flyvbjerg H (2003) Unintended filtering in a typical photodiode detection system for optical tweezers. J Appl Phys 93:3167–3176

    Article  Google Scholar 

  • Fischer M, Richardson AC, Nader S, Reihani S, Oddershede LB, Berg-Sørensen K (2010) Active-passive calibration of optical tweezers in viscoelastic media. Rev Sci Instrum 81:015103

    Article  Google Scholar 

  • Le Gall A, Perronet K, Dulin K, Villing A, Bouyer P, Visscher K, Westbrook N (2010) Simultaneous calibration of optical tweezers spring constant and position detection. Opt Express 18:26469–26474

    Article  Google Scholar 

  • Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612

    Article  Google Scholar 

  • Preece D, Warren R, Evans RML, Gibson GM, Padgett MJ, Cooper JM, Tassieri M (2011) Optical tweezers: wideband microrheology. J Optics 13:044022

    Article  Google Scholar 

  • Pesce G, De Luca AC, Rusciano G, Netti PA, Fusco S, Sasso A (2009) Microrheology of complex fluids using optical tweezers: a comparison with macrorheological measurements. J Opt A 11:034016

    Article  Google Scholar 

  • Otto O, Gornall JL, Stober G, Czerwinski F, Seidel R, Keyser UF (2011) High-speed video-based tracking of optically trapped colloids. J Optics 13:044011

    Article  Google Scholar 

  • Dasgupta BR, Tee SY, Crocker JC, Frisken BJ, Weitz DA (2002) Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E 5:051505

    Article  Google Scholar 

  • Peterman EJG, Gittes F, Schmidt CF (2003) Laser-induced heating in optical traps. J Biophys 84:1308–1316

    Article  CAS  Google Scholar 

  • Meyer A, Marshall A, Bush BG, Furst EM (2006) Laser tweezer microrheology of a colloidal suspension. J Rheol 50:77–93

    Article  CAS  Google Scholar 

  • Pantina JP, Furst EM (2004) Directed assembly and rupture mechanics of colloidal aggregates. Langmuir 20(10):3940–3946

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding from the International Flavors and Fragrances and NASA (grant no. NNX10AE44G) is gratefully acknowledged. The authors thank Mark Pancyzk for his assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Furst.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shindel, M.M., Swan, J.W. & Furst, E.M. Calibration of an optical tweezer microrheometer by sequential impulse response. Rheol Acta 52, 455–465 (2013). https://doi.org/10.1007/s00397-013-0698-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-013-0698-2

Keywords

Navigation