Skip to main content
Log in

Orientation distribution in injection molding: a further step toward more accurate simulations

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, a viscoelastic model was applied to describe the evolution of molecular orientation in injection molding. This model is an evolution of a previously applied nonlinear Maxwell model, in which the relaxation time was allowed to depend on a structural parameter rather than on shear rate as considered in our previous works. The parameter chosen was the difference between the two main eigenvalues of the molecular conformation tensor. The model was applied to some injection molding tests carried out on an amorphous PS. The results in terms of orientation were discussed, also in comparison with the results of the previous model in which relaxation time depended on shear rate. It was found that, apart from being much sounder on a physical basis, the model also introduces improvements on the description of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Balzano L, Rastogi S, Peters GWM (2008) Flow induced crystallization in isotactic polypropylene-1,3:2,4-bis(3,4-dimethylbenzylidene)sorbitol blends: implications on morphology of shear and phase separation. Macromolecules 41:399–408

    Article  CAS  Google Scholar 

  • Cao W, Shen C, Zhang C, Wang L (2008) Computing flow-induced stresses of injection molding based on the Phan–Thien–Tanner model. Arch Appl Mech 78(3):363–377

    Article  Google Scholar 

  • Coccorullo I, Pantani R, Titomanlio G (2008) Spherulitic nucleation and growth rates in an iPP under continuous shear flow. Macromolecules 41:9214–9223

    Article  CAS  Google Scholar 

  • De Santis F, Pantani R, Speranza V, Titomanlio G (2010) Analysis of shrinkage development of a semicrystalline polymer during injection molding. Ind Eng Chem Res 49(3):2469–2476

    Article  Google Scholar 

  • Douven L, Baaijens F, Meijer HEH (1995) Computation of properties of injection-molded products. Prog Polym Sci 20(2):403–457

    Article  CAS  Google Scholar 

  • Housmans J-W, Balzano L, Santoro D, Peters GWM, Meijer HEH (2009) A design to study flow induced crystallization in a multipass rheometer. Int Polym Process 24(2):185–197

    Article  CAS  Google Scholar 

  • Isayev A, Lin T (2010) Frozen-in birefringence and anisotropic shrinkage in optical moldings: I. Theory and simulation scheme. Polymer 51:316–327

    CAS  Google Scholar 

  • Isayev AI, Hieber CA (1980) Toward a viscoelastic modeling of the injection molding of polymers. Rheol Acta 19:168–182

    Article  CAS  Google Scholar 

  • Janeschitz K, Ratajski E, Stadlbauer M (2003) Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364

    Article  Google Scholar 

  • Jansen K, Pantani R, Titomanlio G (1998) As-molded shrinkage measurements on polystyrene injection molded products. Polym Eng Sci 38(2):254–264

    Article  CAS  Google Scholar 

  • Kuhn W, Grun F (1942) Relation between the elasticity constant and extension double diffraction of highly elastic substances. Kolloid-Z 101:248–271

    Article  CAS  Google Scholar 

  • Kwon K, Isayev A, Kim K, Van Sweden C (2006) Theoretical and experimental studies of anisotropic shrinkage in injection moldings of semicrystalline polymers. Polym Eng Sci 46:712–728

    Article  CAS  Google Scholar 

  • Mavridis H, Hrymak AN, Vlachopoulos J (1988) The effect of fountain flow on molecular orientation in injection molding. J Rheol 32(4):639–663

    Article  CAS  Google Scholar 

  • Pantani R (2003) Pressure and cooling rate-induced densification of atactic polystyrene. J Appl Polym Sci 89:184–190

    Article  CAS  Google Scholar 

  • Pantani R (2005) Validation of a model to predict birefringence in injection molding. Eur Polym J 41(5):1484–1492

    Article  CAS  Google Scholar 

  • Pantani R, Balzano L, Peters GWM (2011) Flow-induced morphology of iPP solidified in a shear device. Macromol Mater Eng 297:60–67

    Article  Google Scholar 

  • Pantani R, Coccorullo I, Speranza V, Titomanlio G (2005) Modeling of morphology evolution in the injection molding process of thermoplastic polymers. Prog Polym Sci 30(10):1185–1222

    Article  CAS  Google Scholar 

  • Pantani R, Coccorullo I, Speranza V, Titomanlio G (2007) Morphology evolution during injection molding: effect of packing pressure. Polymer 48(7):2778–2790

    Article  CAS  Google Scholar 

  • Pantani R, Coccorullo I, Volpe V, Titomanlio G (2010) Shear-induced nucleation and growth in isotactic polypropylene. Macromolecules 43:9030–9038

    Article  CAS  Google Scholar 

  • Pantani R, Sorrentino A, Speranza V, Titomanlio G (2004) Molecular orientation in injection molding: experiments and analysis. Rheol Acta 43(2):109–118

    Article  CAS  Google Scholar 

  • Pantani R, Sorrentino A, Speranza V, Titomanlio G (2012) Process-induced morphology distribution in injection molded syndiotactic polystyrene samples. Ind Eng Chem Res 51:10840–10847

    Article  CAS  Google Scholar 

  • Pantani R, Sorrentino A (2005) Pressure effect on viscosity for atactic and syndiotactic polystyrene. Polym Bull 54:365–376

    Article  CAS  Google Scholar 

  • Pantani R, Speranza V, Titomanlio G (2001a) Relevance of crystallisation kinetics in the simulation of the injection molding process. Int polym Process 16(1):61–71

    CAS  Google Scholar 

  • Pantani R, Speranza V, Titomanlio G (2001b) Relevance of mold-induced thermal boundary conditions and cavity deformation in the simulation of injection molding. Polym Eng Sci 41(9):2022–2035

    Article  CAS  Google Scholar 

  • Pantani R, Speranza V, Sorrentino A, Titomanlio G (2002) Molecular orientation and strain in injection moulding of thermoplastics. Macromol Symp 185:293–307

    Article  CAS  Google Scholar 

  • Pantani R, Titomanlio G (1999) Volume relaxation and final product density in injection molding. Int J Form Process 2:211–224

    CAS  Google Scholar 

  • Sadeghi S, Nazockdast H, Mehranpour M (2012) The birefringence and anisotropic planar shrinkage of polycarbonate/organoclay injection moldings. Polym Eng Sci 52(8):2182–2195

    Article  CAS  Google Scholar 

  • Sorrentino A, Pantani R (2009) Pressure-dependent viscosity and free volume of atactic and syndiotactic polystyrene. Rheol Acta 48:467–478

    Article  CAS  Google Scholar 

  • Souvaliotis A, Beris AN (1992) An extended White-Metzner viscoelastic fluid model based on an internal structural parameter. J Rheol 36:241–271

    Article  CAS  Google Scholar 

  • Speranza V, Pantani R, Besana G, Titomanlio G (2007) Anisotropic shrinkage of injection molded poly vinylidene fluoride samples. Polym Eng Sci 47(9):1788–1795

    Article  CAS  Google Scholar 

  • Steenbakkers RJA, Peters GWM (2011) A stretch-based model for flow-enhanced nucleation of polymer melts. J Rheol 55:401–433

    Article  CAS  Google Scholar 

  • Swartjes F, Peters GWM, Rastogi S, Meijer HEH et al (2003) Stress induced crystallization in elongational flow. Int Polym Proc 18:53–66

    CAS  Google Scholar 

  • Vietri U, Sorrentino A, Speranza V, Pantani R (2011) Improving the predictions of injection molding simulation software. Polym Eng Sci 51(10):2542–2551

    Article  CAS  Google Scholar 

  • Watanabe K, Suzuki T, Masubuchi Y, Taniguchi T, Takimoto J, Koyama K (2003) Crystallization kinetics of polypropylene under high pressure and steady shear flow. Polymer 44(19):5843–5849

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pantani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantani, R., Speranza, V. & Titomanlio, G. Orientation distribution in injection molding: a further step toward more accurate simulations. Rheol Acta 51, 1041–1050 (2012). https://doi.org/10.1007/s00397-012-0660-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0660-8

Keywords

Navigation