Skip to main content
Log in

New insight into the kinetic behavior of the structural formation process in agar gelation

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Experimental investigations based on our custom-built torsion resonator were carried out on the kinetics and relaxation of the structural formation process in three agar–water solutions with agar concentrations of 0.75, 1.0, and 2.0 % w/w under natural cooling. An interesting temperature-dependent oscillatory decaying behavior of the structure development rate (SDR) in the agar gelation process is observed. This oscillatory SDR-decaying behavior is indicative of a sum of multiple SDR-determining relaxation processes and could be quantitatively described by a multiple-order Gaussian-like equation, i.e., \(dG^{\prime }/dt\equiv \sum \nolimits _{n=0}^{m}{dG^{\prime }/dt}^{(n)}=\sum \nolimits _{n=0}^{m}K_{n}{\rm exp}[-2(T-T_{n})^{2}/W_{n}^{2}]\). The \({\rm T}_{n}\) dependences of \({\rm W}_{n}\) in the gelation zone were also found to follow the Arrhenius law with activation energies of 39–74 kJ/mol for three investigated samples, indicating the important role of formation or fission of the hydrogen bonding interaction playing in the agar structural network formation. These findings provide insights into the mechanical properties and distinctive structure development rates of agar sols that dynamically and naturally evolve to form gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See www.scchengyi.com.

  2. See www.yudian.com.

  3. Note that the \(m\) value depended on the detecting time \((t)\) of the agar gelation process and the agar concentration and might be dependent on working frequency of the measuring torsion resonator, the final cooling temperature in experiments, as well as on the cooling rate. Further experimental studies on the physical mechanism of Eq. 1 will be reported in the near future, but the case of three agar–water solutions naturally cooled to room temperature was the only concerned in this work.

  4. The relaxation behavior of agar–water systems is more complicated than the Debye relaxation theory description (Nowick and Berry 1972; Su and Kê 1989; Stanley 1995; Nijenhuis 1997; Bohidar et al. 2002).

References

  • Akyurt M, Zaki G, Habeebullah B (2002) Freezing phenomena in icewater systems. Energ Convers Manag 43:1773–1789

    Article  CAS  Google Scholar 

  • Arnott S et al (1974a) i-Carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibres of divalent cation. J Mol Biol 90:253–267

    Article  CAS  Google Scholar 

  • Arnott S et al (1974b) The agarose double helix and its function in agarose gel structure. J Mol Biol 90:269–272

    Article  CAS  Google Scholar 

  • Biagio PLS et al (1996) Spontaneous symmetry-breaking pathways: time-resolved study of agarose gelation. Food Hydrocolloids 10:91–97

    Article  Google Scholar 

  • Bisschops J (1955) Gelation of concentrated polyacrylonitrile solutions. II. J Polymer Sci 83:89–98

    Google Scholar 

  • Bohidar HB, Dubin PL, Osada Y (2002) Polymer gels: fundamentals and applications, vol 833. American Chemical Society, Washington DC

    Book  Google Scholar 

  • Boral S, Saxena A, Bohidar HB (2008) Universal growth of microdomains and gelation transition in agar hydrogels. J Phys Chem B 112:3625–3632

    Article  CAS  Google Scholar 

  • Boral S, Saxena A, Bohidar HB (2010) Syneresis in agar hydrogels. Int J Biol Macromol 46:232–236

    Article  CAS  Google Scholar 

  • Bulone D et al (2004) Ordering of agarose near the macroscopic gelation point. Phys Rev E 041401-1:69

    Google Scholar 

  • Cayre OJ, Chang ST, Velev OD (2007) Polyelectrolyte diode: non-linear current response of a junction between aqueous ionic gels. J Am Chem Soc 129:10801

    Article  CAS  Google Scholar 

  • Clark AH et al (1983) Structural and mechanical properties of agars/gelatin co-gels. Small-deformation studies. Macromolecules 16:1367–1374

    Article  CAS  Google Scholar 

  • Clark AH, Ross-Murphy SB (1987) Structural and mechanical properties of biopolymer gels. Adv Polymer Sci 83:57–192

    Article  CAS  Google Scholar 

  • Dienes GJ (1953) Activation energy for viscous flow and short-range order. J Appl Phys 24:779

    Article  CAS  Google Scholar 

  • Djabourov M, Leblond J, Papon P (1988) Gelation of aqueous gelatin solutions. I. Structural investigation. J Phys France 49:319–332

    Article  CAS  Google Scholar 

  • Eldridge JE, Ferry JD (1954) Studies of the cross-linking process in gelatin gels. III. Dependence ofmelting point on concentration and molecular weight. J Phys Chem 58:992

    Article  CAS  Google Scholar 

  • Emanuele A, Palma-Vittorelli MB (1992) Time-resolved experimental study of shear viscosity in the course of spinodal demixing. Phys Rev Lett 69:81

    Article  CAS  Google Scholar 

  • Feke GT, Prins W (1974) Spinodal phase separation in a macromolecular sol→gel transition. Macromolecules 7:527

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Flory PJ, Weaver ES (1960) Helix [UNK] coil transitions in dilute aqueous collagen solutions. J Am Chem Soc 82:4518–4525

    Article  CAS  Google Scholar 

  • Foord SA, Atkins EDT (1989) New X-ray diffraction results from agarose: extended single helix structures and implications for gelation mechanism. Biopolymers 28:1345–1365

    Article  CAS  Google Scholar 

  • Guo B, Elgsaeter A, Stokke BT (1998) Gelation kinetics of scleraldehyde–chitosanco-gels. Polymer Gels and Networks 6:113–135

    Article  CAS  Google Scholar 

  • Hohammed ZH et al (1998) Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohydr Polymer 36:15–26

    Article  Google Scholar 

  • Labropoulos KC et al (2001) Dynamic rheology of agar gel based aqueous binders. J Am Ceram Soc 84:1217

    Article  CAS  Google Scholar 

  • Lai VM-F, Lii C-Y (2002) Gelation kinetics of agars from Pterocladia capillacea examined by dynamic rheometry. J Food Sci 67:672

    Article  CAS  Google Scholar 

  • Lai VM-F et al (1997) Rheological and thermal characteristics of gel structures from various agar fractions. Int J Biol Macromol 21:123–130

    Article  CAS  Google Scholar 

  • Lai VM-F et al (1999) Rheological and thermal characteristics of gel structures from various agar fractions. Food Hydrocolloids 13:409–418

    Article  CAS  Google Scholar 

  • Li X et al (2002) Detection of water-ice transition using a lead zirconate titanate/brass transducer. J Appl Phys 92:106

    Article  CAS  Google Scholar 

  • Lopes da Silva JA, Gonc¸alves MP, Rao MA (1995) Kinetics and thermal behaviour of the structure formation process in HMP/sucrose gelation. Int J Biol Macromol 17:25–32

    Article  CAS  Google Scholar 

  • Manno M et al (1999) Multiple interactions between molecular and supramolecular ordering. Phys Rev E 59:2222

    Article  CAS  Google Scholar 

  • Moritaka H, Nishinari K, Horiuehi H, Watase M (1980) Rheological properties of aqueous agarose-gelatin gels. J Texture Stud 11:257

    Article  Google Scholar 

  • Nijenhuis K te (1997) Thermoreversible networks: viscoelastic properties and structure of gels. Springer, Berlin

    Google Scholar 

  • Nishinari K (1997) Rheological and DSC study of sol-gel transition in aqueous dispersions of industrially important polymers and colloids. Colloid Polymer Sci 275:1093–1107

    Article  CAS  Google Scholar 

  • Nolte H, John S, Smidsrød O, Stokke BT (1992) Gelation of xanthan with trivalent metal ions. Carbohydr Polymer 18:243–251

    Article  CAS  Google Scholar 

  • Normand V et al (2000) New insight into agarose gel mechanical properties. Biomacromolecules 1:730–738

    Article  CAS  Google Scholar 

  • Nowick AS , Berry BS (1972) Anelastic relaxation in crystalline solids. Academic, New York

    Google Scholar 

  • Omari A (1995) Rheological study of the gelation kinetics of the scleroglucan–zirconium system. Polymer 36:815–819

    Article  CAS  Google Scholar 

  • Piazza L, Benedetti S (2010) Investigation on the rheological properties of agar gels and their role on aroma release in agar/limonene solid emulsions. Food Res Int 43:269–276

    Article  CAS  Google Scholar 

  • Pines E, Prins W (1973) Structure-property relations of thermoreversible macromolecular hydrogels. Macromolecules 6:888

    Article  CAS  Google Scholar 

  • Rao MA, Cooley HJ (1993) Dynamic rheological measurement of structure development in high-methoxyl pectin/fructose gels. J Food Sci 58:876–879

    Article  CAS  Google Scholar 

  • Rees DA et al (1982) The polysaccharides. Academic, New York, pp pp 195–290

    Google Scholar 

  • Richardson RK, Ross-Murphy SB (1981) Mechanical properties of globular proteins gels: 1. Incipient gelation behaviour. Int J Biol Macromol 3:315–322

    Article  CAS  Google Scholar 

  • Ross-Murphy SB (1991a) Incipient behaviour of gelatin gels. Rheol Acta 30:401–411

    Article  CAS  Google Scholar 

  • Ross-Murphy SB (1991b) The estimation of junction zone size from gel time measurements. Carbohydr Polymer 14:281–294

    Article  Google Scholar 

  • Sarkar N (1995) Kinetics of thermal gelation of methylcellulose and hydroxypropylmethylcellulose in aqueous solutions. Carbohydr Polymer 26:195-203

    Article  CAS  Google Scholar 

  • Stanley NF (1995). In: Stephen AM (ed) Food polysaccharides and their applications. Marcel Dekker, New York, pp pp 187–204

    Google Scholar 

  • Su CM, Kê TS (1989) High temperature internal friction peak in single-crystals and bamboo-crystals of aluminium after twisting and annealing. Acta Metall 37:79–85

    Article  CAS  Google Scholar 

  • Takenaka M, Kobayashi T, Hashimoto T, Takahashi M (2002) Time evolution of dynamic shear moduli in a physical gelation process of 1,3:2,4-bis-O-(p-methylbenzylidene)-d-sorbitol in polystyrene melt: critical exponent and gel strength, vol 65, p 041401

  • Tung C-YM, Dynes PJ (1982) Relationship between viscoelastic properties and gelation in thermosetting systems. J Appl Poly Sci 27:569–574

    Article  CAS  Google Scholar 

  • Wang YZ et al (2010a) Viscoelastic measurement of complex fluids using forced oscillating torsion resonator with continuously varying frequency capability. Rheol Acta 49:1117

    Article  CAS  Google Scholar 

  • Wang YZ et al (2010b) Universal scaling description of the strain-softening behavior in the semidilute uncross-linked polyacrylamide-water solution. Soft Matter 6:3318

    Article  CAS  Google Scholar 

  • Wang YZ et al (2012) Abnormal freezing and melting behavior of bulk water detected synchronously by using the torsion resonator apparatus and thermocouple technique

  • Wang YZ, Xiong XM, Zhang JX (2008) New method of forced-resonance measurement for the concentrated and large-viscous liquid in the low frequency range by torsion resonator. J Rheol 52:999–1011

    Article  CAS  Google Scholar 

  • Watase M, Nishinari K (1981) Effect of sodium hydroxide pretreatment on the relaxation spectrum of concentrated agar-agar gels. Rheol Acta 20:155–162

    Article  CAS  Google Scholar 

  • Watase M, Nishinari K (1983) Rheological properties of agarose gels with different molecular weights. Rheol Acta 22:580–588

    Article  CAS  Google Scholar 

  • Watase M, Nishinari K (1986) Rheology, DSC and volume or weight change induced by immersion in solvents for agarose and kappa-carrageenan gels. Polym J 18:1017

    Article  CAS  Google Scholar 

  • Winter HH (1987a) Transient networks, evolution of rheology during chemical gelation. Prog Colloid Polym Sci 75:104–110

    Article  Google Scholar 

  • Winter HH (1987b) Can the gel point of a cross-linking polymer be detected by the G′–G″ crossover?. Polym Eng Sci 27:1698–1702

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Xiong J-Y et al (2005) Topology evolution and gelation mechanism of agarose gel. J Phys Chem B 109:5638

    Article  CAS  Google Scholar 

  • Xiong XM, Zhang JX (2010) Amplitude dependence of elasticity for the assembly of SiO2 powders under shear oscillation strain. Phys Rev E 81:042301

    Article  CAS  Google Scholar 

  • Yashin VV, Balazs AC (2006) Pattern formation and shape changes in self-oscillating polymer gels. Science 314:798–801

    Article  CAS  Google Scholar 

  • Yoshida R, Uesusuki Y (2005) Biomimetic gel exhibiting self-beating motion in ATP solution. Biomacromolecules 6:2923–2926

    Article  CAS  Google Scholar 

  • Yoshimura M, Nishinari K (1999) Dynamic viscoelastic study on the gelation of konjac glucomannan with different molecular weights. Food Hydrocolloids 13:227–233

    Article  CAS  Google Scholar 

  • Zhang JX et al (2003) Resonant absorption mechanical spectrometer and its applications in solids. Chinese Phys Lett 20:1807–1810

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the national physics base at Sun Yat-sen University (nos. J0630320 and J0730313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YZ., Zhang, XH. & Zhang, JX. New insight into the kinetic behavior of the structural formation process in agar gelation. Rheol Acta 52, 39–48 (2013). https://doi.org/10.1007/s00397-012-0658-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0658-2

Keywords

Navigation