Skip to main content
Log in

Interfacial rheology of coextruded elastomeric and amorphous glass thermoplastic polyurethanes

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, we report on the sensitivity of rheometrical techniques to the nature and size of the interface/interphase in coextruded thermoplastic urethanes (TPUs). In particular, the interphases developed during coextrusion of an amorphous glass (hard) TPU (Isoplast® ETPU 301) with one of two elastomeric (soft) TPUs (Estane® TPU 58277 and Estane® TPU X1175) were studied. Differences in the thickness and nature of the interphase of the two coextruded bilayer films were observed by atomic force microscopy. In one case, the interphase is thicker and rough, and in the other case, it is thinner and flat. Rheology was used in order to probe the type and characteristics of the interphases, with coextruded films having been tested in steady shear, small-amplitude oscillatory shear (SAOS), uniaxial extension, and stress relaxation after a step strain in shear. The results were compared with theoretical predictions assuming zero-thickness interfaces and no interfacial slip. For SAOS and stress relaxation experiments, expressions were deduced in order to enable such a prediction to be made. Of all four rheometrical tests, only stress relaxation after a step shear did not follow the theoretical predictions and, thus, was sensitive enough to detect the presence of the interphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baer E, Kerns J, Hiltner A (2000) Processing and properties of polymer microlayered systems. In: Structure development during polymer processing, vol 370, pp 327–344

  • Bousmina M, Palierne JF, Utracki LA (1999) Modeling of structured polyblend flow in a laminar shear field. Polym Eng Sci 39(6):1049–1059

    Article  CAS  Google Scholar 

  • Bousmina M, Qiu H (2000) Determination of mutual diffusion coefficients at nonsymmetric polymer/polymer interfaces from rheometry. Macromolecules 33(17):6588–6594. doi:10.1021/ma991948k

    Article  Google Scholar 

  • Carriere CJ, Ramanathan R (1995) Multilayer rheology: a comparison of experimental data with modeling of multilayer shear flow. Polym Eng Sci 35(24):1979–1984

    Article  CAS  Google Scholar 

  • Cossar S, Nichetti D, Grizzuti N (2004) A rheological study of the phase transition in thermoplastic polyurethanes. Critical gel behavior and microstructure development. J Rheol 48(3):691–703

    CAS  Google Scholar 

  • Harton SE, Stevie FA, Ade H (2005) Diffusion-controlled reactive coupling at polymer-polymer interfaces. Macromolecules 38(9):3543–3546

    Article  CAS  Google Scholar 

  • Jiao JB, Kramer EJ, de Vos S, Moller M, Koning C (1999) Morphological changes of a molten polymer/polymer interface driven by grafting. Macromolecules 32(19):6261–6269

    Article  CAS  Google Scholar 

  • Kim HY, Kim HJ, Kim JK (2006) Effect of interfacial reaction and morphology on rheological properties of reactive bilayer. Polym J 38(11):1165–1172

    Article  CAS  Google Scholar 

  • Lamnawar K, Baudouin A, Maazouz A (2010) Interdiffusion/reaction at the polymer/polymer interface in multilayer systems probed by linear viscoelasticity coupled to FTIR and NMR measurements. Eur Polym J 46(7):1604–1622. doi:10.1016/j.eurpolymj.2010.03.019

    Article  CAS  Google Scholar 

  • Lamnawar K, Maazouz A (2008) Rheology and morphology of multilayer reactive polymers: effect of interfacial area in interdiffusion/reaction phenomena. Rheol Acta 47(4):383–397

    Article  CAS  Google Scholar 

  • Levesque R, Vaudreuil S, Mighri F, Bousmina M (2005) Thermally-activated non-reversible response of polystyrene/polyvinyl methyl ether (PS/PVME) sandwich sample under small-amplitude oscillatory shear flow. J Polym Eng 25(6):487–499

    CAS  Google Scholar 

  • Levitt L, Macosko CW, Schweizer T, Meissner J (1997) Extensional rheometry of polymer multilayers: a sensitive probe of interfaces. J Rheol 41(3):671–685

    Article  CAS  Google Scholar 

  • Lin CC (1979) Mathematical model for viscosity in capillary extrusion of 2-component polyblends. Polym J 11(3):185–192

    Article  CAS  Google Scholar 

  • Lyu SP, Cernohous JJ, Bates FS, Macosko CW (1999) Interfacial reaction induced roughening in polymer blends. Macromolecules 32(1):106–110

    Article  CAS  Google Scholar 

  • Macosko CW, Lee PC, Park HE, Morse DC (2009) Polymer-polymer interfacial slip in multilayered films. J Rheol 53(4):893–915. doi:10.1122/1.3114370

    Article  Google Scholar 

  • Macosko CW, Zhao R (2002) Slip at polymer-polymer interfaces: rheological measurements on coextruded multilayers. J Rheol 46(1):145–167

    Article  Google Scholar 

  • Macosko CW, Zhao R (2007) Polymer-polymer mutual diffusion via rheology of coextruded multilayers. Aiche J 53(4):978–985. doi:10.1002/aic.11136

    Article  Google Scholar 

  • Mchugh AJ, Guy RK, Tree DA (1993) Extensional flow-induced crystallization of a polyethylene melt. Colloid Polym Sci 271(7):629–645

    Article  CAS  Google Scholar 

  • Mechbal N, Bousmina M (2007) Effect of copolymer addition on drop deformation during uniaxial elongation and during relaxation after cessation of flow. Macromolecules 40(4):967–975

    Article  CAS  Google Scholar 

  • Park HE, Lee PC, Macosko CW (2010) Polymer-polymer interfacial slip by direct visualization and by stress reduction. J Rheol 54(6):1207–1218. doi:10.1122/1.3479389

    Article  CAS  Google Scholar 

  • Qiu H, Bousmina M (1999) New technique allowing the quantification of diffusion at polymer polymer interfaces using rheological analysis: Theoretical and experimental results. J Rheol 43(3):551–568

    Article  CAS  Google Scholar 

  • Qiu H, Bousmina M (2002) Molecular weight polydispersity effects on diffusion at polymer/polymer interfaces. Can J Chem Eng 80(6):1206–1213

    Article  CAS  Google Scholar 

  • Qiu H, Bousmina M, Dealy JM (2002) Coupling between flow and diffusion at polymer/polymer interfaces: large amplitude oscillatory shear experiments. Rheol Acta 41(1–2):87–92

    Article  CAS  Google Scholar 

  • Schulze JS, Cernohous JJ, Hirao A, Lodge TP, Macosko CW (2000) Reaction kinetics of end-functionalized chains at a polystyrene/poly(methyl methacrylate) interface. Macromolecules 33(4):1191–1198

    Article  CAS  Google Scholar 

  • Sentmanat M, Hatzikiriakos SG (2004) Mechanism of gross melt fracture elimination in the extrusion of polyethylenes in the presence of boron nitride. Rheol Acta 43(6):624–633

    Article  CAS  Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43(6):657–669

    Article  CAS  Google Scholar 

  • Silva J, Machado AV, Maia J (2007) Rheological behavior of compatibilized and non-compatibilized PA6/EPM blends. Rheol Acta 46(8):1091–1097

    Article  CAS  Google Scholar 

  • Silva J, Machado AV, Moldenaers P, Maia J (2010a) The effect of interfacial properties on the deformation and relaxation behavior of PMMA/PS blends. J Rheol 54(4):797–813. doi:10.1122/1.3439732

    Article  CAS  Google Scholar 

  • Silva JM, Machado AV, Moldenaers P, Maia JM (2010b) The role of interfacial elasticity on the rheological behavior of polymer blends. Korea-Aust Rheol J 22(1):21–29

    Google Scholar 

  • Vaudreuil S, Qiu H, Kaliaguine S, Grmela M, Bousmina M (2000) Mutual diffusion at polystyrene/poly(vinyl methyl ether) as measured by ATR-FTIR and rheometry. Macromol Symp 158:155–168

    Article  CAS  Google Scholar 

  • Velankar S, Cooper SL (2000) Microphase separation and rheological properties of polyurethane melts. 3. Effect of block incompatibility on the viscoelastic properties. Macromolecules 33(2):395–403

    Article  CAS  Google Scholar 

  • Yang WP, Macosko CW, Wellinghoff ST (1986) Thermal-degradation of urethanes based on 4,4-Diphenylmethane Diisocyanate and 1,4-Butanediol (Mdi/Bdo). Polymer 27(8):1235–1240

    Article  CAS  Google Scholar 

  • Zhang JB, Lodge TP, Macosko CW (2005) Interfacial morphology development during PS/PMMA reactive coupling. Macromolecules 38(15):6586–6591

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Lubrizol Advanced Materials, Inc. and NSF STC Center CLiPS–Center for Layered Polymer Systems for financial support. Ricardo Andrade would also like to acknowledge the financial support of FCT-Foundation for Science and Technology, Portugal, through grant no. SFRH/BD/62152/2009. The authors would like to express their sincere gratitude to Prof. Savvas G. Hatzikiriakos for providing his lab in performing the extensional studies of the materials. They would also like to thank Tom Braden for extruding the bilayer films. Estane® TPU and Isoplast® ETPU are trademarks of The Lubrizol Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, J., Maia, J.M., Huang, R. et al. Interfacial rheology of coextruded elastomeric and amorphous glass thermoplastic polyurethanes. Rheol Acta 51, 947–957 (2012). https://doi.org/10.1007/s00397-012-0652-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0652-8

Keywords

Navigation