Rheologica Acta

, Volume 51, Issue 11–12, pp 979–989 | Cite as

Rheological properties of electron beam-irradiated polypropylenes with different molar masses

  • Dietmar Auhl
  • Florian J. Stadler
  • Helmut Münstedt
Original Contribution

Abstract

Electron beam-irradiated polypropylene undergoes chain scission initiated by the loss of a proton. The resulting macroradicals can lead to branched molecules. However, the understanding of the influence of irradiation on the branching of polypropylene is still scarce. Therefore, this paper investigates structure–property relationships in such irradiated polymers. In general, irradiation yields long-chain branches, which develop from a star-like into a tree-like branching architecture with increasing dose. These conclusions can be drawn from the relation between the zero shear-rate viscosity η0 and the weight average molar mass Mw as well as from the elongational behavior.

Keywords

Polypropylene Electron beam irradiation Long-chain branching Zero shear-rate viscosity Elongational rheology 

References

  1. Arikan B, Stadler FJ, Kaschta J, Münstedt H, Kaminsky W (2007) Synthesis and characterization of novel ethene-graft-ethene/propene copolymers. Macromol Rapid Commun 28(14):1472–1478CrossRefGoogle Scholar
  2. Auhl D, Stange J, Münstedt H, Krause B, Voigt D, Lederer A, Lappan U, Lunkwitz K (2004) Long-chain branched polypropylenes by electron beam irradiation and their rheological properties. Macromolecules 37(25):9465–9472CrossRefGoogle Scholar
  3. Auhl D, Stadler FJ, Münstedt H (2012) Comparison of molecular structure and rheological properties of an electron- and γ-irradiated polypropylene. Macromolecules 45:2057–2065CrossRefGoogle Scholar
  4. Ball RC, Mcleish TCB (1989) Dynamic dilution and the viscosity of star polymer melts. Macromolecules 22(4):1911–1913CrossRefGoogle Scholar
  5. Berry GC, Fox TG (1968) The viscosity of polymers and their concentrated solutions. Adv Polym Sci 5:261–357CrossRefGoogle Scholar
  6. Bersted BH (1985) On the effects of very low-levels of long-chain branching on rheological behavior in polyethylene. J Appl Polym Sci 30(9):3751–3765CrossRefGoogle Scholar
  7. Bersted BH, Slee JD, Richter CA (1981) Prediction of rheological behavior of branched polyethylene from molecular structure. J Appl Polym Sci 26(4):1001–1014CrossRefGoogle Scholar
  8. Dealy J, Larson RG (2006) Structure and rheology of molten polymers - from structure to flow behavior and back again. Munich, HanserCrossRefGoogle Scholar
  9. DeNicola AJ (1989) Process for making a propylene polymer with free-end long chain branching and use thereof. EP 866Google Scholar
  10. Dorschner H, Jenschke W, Lunkwitz K (2000) Radiation field distributions of an industrial electron beam accelerator. Nucl Instrum Methods Phys Res B 161(163):1154–1158CrossRefGoogle Scholar
  11. Eckstein A, Friedrich C, Lobbrecht A, Spitz R, Mulhaupt R (1997) Comparison of the viscoelastic properties of syndio- and isotactic polypropylenes. Acta Polym 48(1–2):41–46CrossRefGoogle Scholar
  12. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New YorkGoogle Scholar
  13. Fetters LJ, Kiss AD, Peareon DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26(4):647–654CrossRefGoogle Scholar
  14. Fetters LJ, Lohse DJ, Colby RH (2007) Chain dimensions and entanglement spacings. In: Mark JE (ed) Physical properties of polymers, 2nd edn. AIP Press, WoodburyGoogle Scholar
  15. Fleissner M (1992) Characterization of polymer molecular mass distribution from rheological measurements. Makromol Chem-Macromol Symp 61:324–341CrossRefGoogle Scholar
  16. Frischknecht AL, Milner ST, Pryke A, Young RN, Hawkins R, McLeish TCB (2002) Rheology of three-arm asymmetric star polymer melts. Macromolecules 35(12):4801–4820CrossRefGoogle Scholar
  17. Fujiyama M, Inata H (2002) Rheological properties of metallocene isotactic polypropylenes. J Appl Polym Sci 84(12):2157–2170CrossRefGoogle Scholar
  18. Gabriel C, Münstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41(4):232–244CrossRefGoogle Scholar
  19. Gabriel C, Münstedt H (2003) Strain hardening of various polyolefins in uniaxial elongational flow. J Rheol 47(4): 619–630CrossRefGoogle Scholar
  20. Gahleitner M (2001) Melt rheology of polyolefins. Prog Polym Sci 26(6):895–944CrossRefGoogle Scholar
  21. Graessley WW, Roovers J (1979) Melt rheology of four-arm and six-arm star polystyrenes. Macromolecules 12(5):959–965CrossRefGoogle Scholar
  22. Hepperle J, Münstedt H (2006) Rheological properties of branched polystyrenes: nonlinear shear and extensional behavior. Rheol Acta 45(5):717–727CrossRefGoogle Scholar
  23. Hepperle J, Münstedt H, Haug PK, Eisenbach CD (2005) Rheological properties of branched polystyrenes: linear viscoelastic behavior. Rheol Acta 45(3):151–163CrossRefGoogle Scholar
  24. Inkson NJ, Graham RS, McLeish TCB, Groves DJ, Fernyhough CM (2006) Viscoelasticity of monodisperse comb polymer melts. Macromolecules 39(12):4217–4227CrossRefGoogle Scholar
  25. Karjala TP, Sammler RL, Mangnus MA, Hazlitt LG, Johnson MS, Wang JA, Hagen CM, Huang JWL, Reichek KN (2011) Detection of low levels of long-chain branching in polydisperse polyethylene materials. J Appl Polym Sci 119(3):636–646CrossRefGoogle Scholar
  26. Körber H, Lappan U, Geissler U, Lunkwitz K, Hanke R (2001) G Patent. 19 930 742Google Scholar
  27. Kraus G, Gruver JT (1965) Rheological properties of multichain polybutadienes. J Polym Sci Part A, Gen Pap 3(1pa):105–122CrossRefGoogle Scholar
  28. Krause B, Voigt D, Haussler L, Auhl D, Münstedt H (2006) Characterization of electron beam irradiated polypropylene: influence of irradiation temperature on molecular and rheological properties. J Appl Polym Sci 100(4):2770–2780CrossRefGoogle Scholar
  29. Langston JA, Colby RH, Chung TCM, Shimizu F, Suzuki T, Aoki M (2007) Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent. Macromolecules 40(8):2712–2720CrossRefGoogle Scholar
  30. Laun HM, Münstedt H (1978) Elongational behaviour of a low density polyethylene melt I. Strain rate and stress dependence of viscosity and recoverable strain in the steady-state. Comparison with shear data. Influence of interfacial tension. Rheol Acta 17:415–425CrossRefGoogle Scholar
  31. Malmberg A, Gabriel C, Steffl T, Münstedt H, Lofgren B (2002) Long-chain branching in metallocene-catalyzed polyethylenes investigated by low oscillatory shear and uniaxial extensional rheometry. Macromolecules 35(4):1038–1048CrossRefGoogle Scholar
  32. Masuda T, Kitagawa K, Inoue T, Onogi S (1970) Rheological properties of anionic polystyrenes. II. Dynamic viscoelasticity of blends of narrow-distribution polystyrenes. Macromolecules 3(3):116–125CrossRefGoogle Scholar
  33. McLeish TCB (2002) Tube theory of entangled polymer dynamics. Adv Phys 51(6):1379–1527CrossRefGoogle Scholar
  34. Meissner J (1969) Rheometer for the study of mechanical properties of deformation of plastic melts under definite tensile stress. Rheol Acta 8(1):78–88CrossRefGoogle Scholar
  35. Mitsoulis E (1998) Numerical simulation of confined flow of polyethylene melts around a cylinder in a planar channel. J Non-Newton Fluid Mech 76:327–350CrossRefGoogle Scholar
  36. Münstedt H (1979a) Elongational behavior of a low density polyethylene melt II. Transient behavior in constant stretching rate and tensile creep experiments. Comparison with shear data. Temperature dependence of the elongational properties. Rheol Acta 18:492–504CrossRefGoogle Scholar
  37. Münstedt H (1979b) New universal extensional rheometer for polymer melts. Measurements on a polystyrene sample. J Rheol 23(4):421–436CrossRefGoogle Scholar
  38. Münstedt H (1986) Polymerschmelzen. In: Kulicke W (ed) Fließverhalten von Stoffen und Stoffgemischen. Hüthig & Wepf, Basel, pp 238–279Google Scholar
  39. Münstedt H (2011) Rheological properties and molecular structure of polymer melts. Soft Matter 7(6):2273CrossRefGoogle Scholar
  40. Münstedt H, Laun HM (1981) Elongational properties and molecular structure of polyethylene melts. Rheol Acta 20(4):211–221CrossRefGoogle Scholar
  41. Münstedt H, Gabriel C, Auhl D (2003) Long-chain branching and elongational properties of polyethylene and polypropylene melts. Abstr Pap Am Chem Soc 226:U382–U382Google Scholar
  42. Münstedt H, Steffl T, Malmberg A (2005) Correlation between rheological behaviour in uniaxial elongation and film blowing properties of various polyethylenes. Rheol Acta 45(1):14–22CrossRefGoogle Scholar
  43. Pearson DS, Helfand E (1984) Viscoelastic properties of star-shaped polymers. Macromolecules 17(4):888–895CrossRefGoogle Scholar
  44. Piau J-M, Agassant JF (1996) Rheology for polymer melt processing. Elsevier, AmsterdamGoogle Scholar
  45. Read DJ, Auhl D, Das C, den Doelder J, Kapnistos M, Vittorias I, McLeish TCB (2011) Linking models of polymerization and dynamics to predict branched polymer structure and flow. Science 333(6051):1871–1874CrossRefGoogle Scholar
  46. Rochefort WE, Smith GG, Rachcpudy H, Raju VR, Graessley WW (1979) Properties of amorphous and crystallizable hydrocarbon polymers. II. Rheology of linear and star-branched polybutadiene. Polymer 17:1197–1210Google Scholar
  47. Rojo E, Munoz ME, Santamaria A, Pena B (2004) Correlation between conformational parameters and rheological properties of molten syndiotactic polypropylenes. Macromol Rapid Commun 25(14):1314–1318CrossRefGoogle Scholar
  48. Scheve BJ, Mayfield JW, DeNicola AJ (1986) Polypropylene with free-end long chain branching, process for making it, and use thereof. EP 889Google Scholar
  49. Scheve BJ, Mayfield JW, DeNicola AJ (1990) High melt strength, propylene polymer, process for making it, and use thereof. US Patent 198Google Scholar
  50. Schweizer T (2000) Uniaxial elongational rheometry with little strain hardening linear polyethylene. In: XIIIth international congress on rheology, vol 1, pp 219–221Google Scholar
  51. Spadaro G, Valenza A (2000) Infuence of the irradiation parameters on the molecular modifications of an isotactic polypropylene gamma-irradiated under vacuum. Polym Degrad Stab 67:449–454CrossRefGoogle Scholar
  52. Stadler FJ (2012) Detecting Very low levels of long-chain branching in metallocene catalyzed polyethylenes. Rheol Acta. doi:10.1007/s00397-012-0642-x Google Scholar
  53. Stadler FJ, Münstedt H (2009) Correlations between the shape of viscosity functions and the molecular structure of long-chain branched polyethylenes. Macromol Mater Eng 294(1):25–34CrossRefGoogle Scholar
  54. Stadler FJ, Piel C, Kaschta J, Rulhoff S, Kaminsky W, Münstedt H (2006) Dependence of the zero shear-rate viscosity and the viscosity function of linear high-density polyethylenes on the mass-average molar mass and polydispersity. Rheol Acta 45(5):755–764CrossRefGoogle Scholar
  55. Stadler FJ, Kaschta J, Münstedt H, Becker F, Buback M (2009) Influence of molar mass distribution and long-chain branching on strain hardening of low density polyethylene. Rheol Acta 48(5):479–490CrossRefGoogle Scholar
  56. Stadler FJ, Arikan B, Kaschta J, Kaminsky W (2010) Long-chain branches in syndiotactic polypropene induced by vinyl chloride. Macromol Chem Phys 211(13):1472–1481CrossRefGoogle Scholar
  57. Stange J, Münstedt H (2006) Effect of long-chain branching on the foaming of polypropylene with azodicarbonamide. J Cell Plast 42(6):445–467CrossRefGoogle Scholar
  58. Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18(12):2630–2643CrossRefGoogle Scholar
  59. Trouton FT (1906) On the viscous traction and its relation to that of viscosity. Proc R Soc 77:426Google Scholar
  60. Walter P, Trinkle S, Lilge D, Friedrich C, Mulhaupt R (2001) Long chain branched polypropene prepared by means of propene copolymerization with 1,7-octadiene using MAO-activated rac-Me2Si(2-Me-4-phenyl-Ind)(3)ZrCl2. Macromol Mater Eng 286(5):309–315CrossRefGoogle Scholar
  61. Weng WQ, Hu WG, Dekmezian AH, Ruff CJ (2002) Long chain branched isotactic polypropylene. Macromolecules 35(10):3838–3843CrossRefGoogle Scholar
  62. Wolff F, Resch JA, Kaschta J, Münstedt H (2010) Comparison of viscous and elastic properties of polyolefin melts in shear and elongation. Rheol Acta 49(1):95–103. doi:10.1007/s00397-009-0396-2 CrossRefGoogle Scholar
  63. Wood-Adams PM, Dealy JM, deGroot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33(20):7489–7499CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Dietmar Auhl
    • 1
    • 2
  • Florian J. Stadler
    • 1
    • 3
  • Helmut Münstedt
    • 1
  1. 1.Institute of Polymer MaterialsFriedrich-Alexander University Erlangen-NürnbergErlangenGermany
  2. 2.Bio- and Soft Matter, Institute of Condensed Matter and NanosciencesUniversité Catholique de LouvainLouvain-La-NeuveBelgium
  3. 3.School of Semiconductor and Chemical EngineeringChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations