Rheologica Acta

, Volume 51, Issue 8, pp 755–769 | Cite as

Microsecond relaxation processes in shear and extensional flows of weakly elastic polymer solutions

  • Damien C. VadilloEmail author
  • Wouter Mathues
  • Christian Clasen
Original Contribution


In this paper, we introduce an experimental protocol to reliably determine extensional relaxation times from capillary thinning experiments of weakly elastic dilute polymer solutions. Relaxation times for polystyrene in diethyl phthalate solutions as low as 80 μ s are reported: the lowest relaxation times in uniaxial extensional flows that have been assessed so far. These data are compared to the linear viscoelastic relaxation times that are obtained from fitting the Zimm spectrum to high frequency oscillatory squeeze flow data measured with a piezo-axial vibrator (PAV). This comparison demonstrates that the extensional relaxation time reduced by the Zimm time, λ ext/λ z, is not solely a function of the reduced concentration c/c*, as is commonly stated in the literature: an additional dependence on the molecular weight is observed.


Polymer solution Linear viscoelasticity Nonlinear viscoelasticity Extensional flow Necking, Relaxation time 



CC and WM acknowledge financial support from the ERC starting grant no. 203043-NANOFIB. DV acknowledges financial support from the Engineering and Physical Sciences Research Council (UK) and industrial partners in the Innovation in Industrial Inkjet Technology project, EP/H018913/1 as well as Dr T. Tuladhar and Dr S. Hoath and Dr Phil Threlfall-Holmes for discussions. The authors acknowledge Prof. M. Mackley for fruitful discussions and Dr S. Butler for his help in low-viscosity measurements.


  1. Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45:115–138CrossRefGoogle Scholar
  2. Anna SL, McKinley G, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF (2001) An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45:83–114CrossRefGoogle Scholar
  3. Arnolds O, Buggisch H, Sachsenheimer D, Willenbacher N (2010) Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethyleneoxide (PEO) solutions. Rheol Acta 49:1207–1217CrossRefGoogle Scholar
  4. Bach A, Koblitz Rasmussen H, Hassager O (2003) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47(2):429–441CrossRefGoogle Scholar
  5. Bazilevsky AV, Entov VM, Rozhkov AN (1990) Liquid filament microrheometer and some of its applications, Third European Rheol. Conf., (ed. Oliver DR). Elsevier Applied Science, pp 41–43Google Scholar
  6. Bazilevsky AV, Entov VM, Rozhkov AN (1997) Failure of polymer solutions filaments. Pol Sc Series B 39:316–324Google Scholar
  7. Bazilevsky AV, Entov VM, Rozhkov AN (2001) Breakup of an Oldroyd liquid bridge as a method for testing the rheological properties of polymer solutions. Polym Sci 43:716Google Scholar
  8. Brenner MP, Lister JR, Stone HA (1996) Pinching threads, singularities and the number 0.0304. Phys Fluids 8:2827–2836CrossRefGoogle Scholar
  9. Campo-Deaño L, Clasen C (2010) The slow retraction method (SRM) for the determination of ultra-sort relaxation times in capillary breakup extensional rheometry experiments. J Non-Newton Fluid Mech 165:1688–1699CrossRefGoogle Scholar
  10. Clasen C (2010) Capillary breakup extensional rheometry of semi-dilute polymer solutions. Korea-Aust Rheol J 22(4):331–338Google Scholar
  11. Clasen C, Plog JP, Kulicke W-M, Owens M, Macosko C, Scriven LE, Verani M, McKinley GH (2006a) How dilute are dilute solutions in extensional flows? J Rheol 50:849–881CrossRefGoogle Scholar
  12. Clasen C, Eggers J, Fontelos MA, Li J, McKinley GH (2006b) The beads-on-string structure of viscoelastic threads. J Fluid Mech 556:283–308CrossRefGoogle Scholar
  13. Clasen C, Bico J, Entov V, McKinley GH (2009) ‘Gobbling drops’: the jetting–dripping transition in flows of polymer solutions. J Fluid Mech 636:5–40CrossRefGoogle Scholar
  14. Clasen C, Phillips PM, Palangetic L, Vermant J (2012) Dispensing of rheologically complex fluids: the map of misery. AICHE J. doi: 10.1002/aic.13704 Google Scholar
  15. Crassous J, Régisser R, Ballauff M, Willenbacher N (2005) Characterisation of the viscoelastic behaviour of complex flùids using the piezoelastic axial vibrator. J Rheol 49:851–863CrossRefGoogle Scholar
  16. Day RF, Hinch EJ, Lister JR (1998) Self-similar capillary pinchoff of an inviscid fluid. Phys Rev Lett 80(4):704–707CrossRefGoogle Scholar
  17. Eggers J (1997) Nonlinear dynamics and breakup of free-surface flows. Rev Mod Phys 69:865–929CrossRefGoogle Scholar
  18. Entov VM, Hinch EJ (1997) Effect of a spectrum relaxation times on the capillary thinning of a filament elastic liquids. J Non-Newton Fluid Mech 72:31–53CrossRefGoogle Scholar
  19. Entov VM, Yarin AL (1984) Influence of elastic stresses on the capillary breakup of jets of dilute polymer solutions. Fluid Dyn 19:21–29CrossRefGoogle Scholar
  20. Erni P, Varagnat M, Clasen C, Crest J, McKinley GH (2011) Microrheometry of sub-nanoliter biopolymer samples: non-newtonian flow phenomena of carnivorous plant mucilage. Soft Mat 7:10889CrossRefGoogle Scholar
  21. Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on the concentration, molecular weight and solvent power. Polymer 21:258–262CrossRefGoogle Scholar
  22. Groß T, Kirschenmann L, Pechhold W (2002) Piezo Axial Vibrator (PAV)—a new oscillating squeeze flow rheometer. In: Munsted H, Kaschta J, Merten A (eds) Proceedings Eurheo, ErlangenGoogle Scholar
  23. Gupta RK, Nguyen DA, Sridhar T (2000) Extensional viscosity of dilute polystyrene solutions: effect of concentration and molecular weight. Phys Fluids 13(6):1296–1317CrossRefGoogle Scholar
  24. Harrison GM, Remmelgas J, Leal LG (1998) The dynamics of ultradilute polymer solutions in transient flow: comparison of dumbbell-based theory and experiment. J Rheol 42:1039–1058CrossRefGoogle Scholar
  25. Hoath SD, Hutchings IM, Martin GD, Tuladhar TR, Mackley MR, Vadillo DC (2009) Link between ink rheology, drop-on-demand jet formation and printability. J Imaging Sci Technol 53(4):041208CrossRefGoogle Scholar
  26. Hsieh CC, Larson RG (2005) Prediction of coil-stretch hysteresis for dilute polystyrene molecules in extensional flow. J Rheol 49:1081–1089CrossRefGoogle Scholar
  27. Hsieh CC, Li L, Larson RG (2003) Modeling hydrodynamic interaction in Brownian dynamcs: simulations of extensional flows of dilute solutions of DNA and polystyrene. J Non-Newton Fluid Mech 113:147–191CrossRefGoogle Scholar
  28. Huertas A, Medioni G (1986) Detection of intensity changes with subpixel accuracy using Laplacian–Gaussian Masks. IEEE Trans Pattern Anal Mach Intell Pami-8(5):651–664CrossRefGoogle Scholar
  29. Kirschenmann L (2003) PhD thesis, Institut für dynamische Materialprüfung (IdM), University of UlmGoogle Scholar
  30. Kojic N, Bico J, Clasen C, McKinley GH (2006) Ex vivo rheology of spider silk. J Exp Biol 209:4355–4362CrossRefGoogle Scholar
  31. Kolte MI, Szabo P (1999) Capillary thinning of polymeric filaments. J Rheol 43:609–625CrossRefGoogle Scholar
  32. Kulicke W-M, Clasen C (2004) Viscosimetry of polymers and polyelectrolytes. Springer, HeidelbergGoogle Scholar
  33. Kumar KS, Prakash JR (2003) Equilibrium swelling and universal ratios in dilute polymer solutions: exact Brownian dynamics simulations for a delta function excluded volume potential. Macromolecules 36:7842–7856CrossRefGoogle Scholar
  34. Larson RG (2005) The rheology of dilute solutions of flexible polymers: progress and problems. J Rheol 49:1–70CrossRefGoogle Scholar
  35. Liang RF, Mackley MR (1994)4 Rheological characterisation of the time and strain dependence for polyisobutylene solutions. J Non-Newton Fluid Mech 52:387–405CrossRefGoogle Scholar
  36. Ma WKA, Chinesta F, Tuladhar T, Mackley MR (2008) Filament stretching of carbon nano tube suspension. Rheol Acta 47:447–457CrossRefGoogle Scholar
  37. Marr D, Hildreth E (1980) Theory of edge detection. Proc R Soc Lond B 207:187–217CrossRefGoogle Scholar
  38. McKinley GH (2005) Visco-elasto-capillary thinning and break-up of complex fluid. Rheology Reviews 2005, The British Soc Rheol, 1–49Google Scholar
  39. McKinley GH, Sridhar T (2002) Filament stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415CrossRefGoogle Scholar
  40. McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from a capillary break up measurement in a filament rheometer. J Rheol 44:653–670CrossRefGoogle Scholar
  41. Miller E, Clasen C, Rothstein JP (2009) The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements. Rheol Acta 48:625–639CrossRefGoogle Scholar
  42. Nguyen TQ, Kausch HH (1999) Flexible polymer chains in elongational flow: theory & experiment. Springer, BerlinCrossRefGoogle Scholar
  43. Öttinger HC (1996) Stochastic processes in polymeric liquids. Springer, BerlinCrossRefGoogle Scholar
  44. Plog JP, Kulicke WM, Clasen C (2005) Influence of the molar mass distribution on the elongational behaviour of polymer solutions in capillary breakup. Appl Rheol 15:28–37Google Scholar
  45. Prabhakar R, Siddarth G (2011) The role of coil-stretch hysteresis in the capillary breakup of dilute polymer solutions. The society of rheology 83rd annual meeting. Cleveland, Ohio (USA)Google Scholar
  46. Prabhakar R, Prakash JR, Sridhar T (2006) Effect of configuration-dependent intramolecular hydrodynamic interaction on elasto-capillary thinning and break-up filaments of dilute polymer solutions. J Rheol 50:925–947CrossRefGoogle Scholar
  47. Regev O, Vandebril S, Zussman E, Clasen C (2010) The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 51:2611–2620CrossRefGoogle Scholar
  48. Renardy M (1994) Some comments on the surface tension driven breakup (or the lack of it) of the viscoelastic jets. J Non-Newton Fluid Mech 51:97–107CrossRefGoogle Scholar
  49. Renardy M (1995) A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets. J Non-Newton Fluid Mech 59:267–282CrossRefGoogle Scholar
  50. Rodd LE, Scott TP, Cooper-White JJ, McKinley GH (2005) Capillary breakup rheometry of low-viscosity elastic fluids. Appl Rheol 15(1):12–27Google Scholar
  51. Sattler R, Wagner C, Eggers J (2008) Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions. Phys Rev Lett 100:164502CrossRefGoogle Scholar
  52. Schroeder CM, Shaqfeh ESG, Chu S (2004) Effect of hydrodynamic interactions on DNA dynamics in extensional flow: simulation and single molecule experiment. Macromolecules 37:9242–9256CrossRefGoogle Scholar
  53. Sharma V, Ardekani AM, McKinley GH (2010) ‘Beads on a String’ structures and extensional rheometry using jet break-up. 5th Pacific Rim Conference on Rheology (PRCR-5)Google Scholar
  54. Somani S, Shaqfeh ESG, Prakash JR (2010) Effect of solvent quality on the coil-stretch transition. Macromolecules 43:10679–10691CrossRefGoogle Scholar
  55. Spiegelberg SH, McKinley GH (1996) Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow. J Non-Newton Fluid Mech 67:49–76CrossRefGoogle Scholar
  56. Spiegelberg SH, Ables DC, McKinley GH (1996) The role of end-effects on measurements of extensional viscosity in filament stretching rheometers. J Non-Newton Fluid Mech 64:229–267CrossRefGoogle Scholar
  57. Sridhar T (1990) An overview of the project M1. J Non-Newton Fluid Mech 35:85–92CrossRefGoogle Scholar
  58. Stelter M, Brenn G, Yarin AL, Singh RP, Durst F (2002) Investigation of the elongation behavior of polymer solutions by means of an elongational rheometer. J Rheol 46:507–527CrossRefGoogle Scholar
  59. Stoltz C, De Pablo JJ, Graham MD (2006) Concentration dependence of shear and extensional rheology of polymer solutions: Brownian dynamics simulations. J Rheol 50: 137–167CrossRefGoogle Scholar
  60. Sunthar P, Prakash JR (2005) Parameter-free prediction of DNA conformations in elongational flow by successive fine graining. Macromolecules 38:617–640CrossRefGoogle Scholar
  61. Szabo P, McKinley GH, Clasen C (2012) Constant force extensional rheometry of polymer solutions. J Non-Newton Fluid Mech 169–170:26–41CrossRefGoogle Scholar
  62. Tirtaatmadja V, McKinley GH, Cooper-White JJ (2006) Drop formation and breakup of low viscosity elastic fluids: effects of molecular weight and concentration. Phys Fluids 18:043101CrossRefGoogle Scholar
  63. Tuladhar TR, Mackley MR (2008) Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and ink jets fluids. J Non-Newton Fluid Mech 148: 97–108CrossRefGoogle Scholar
  64. Vadillo DC, Tuladhar TR, Mulji AC, Mackley MR, Jung S, Hoath SD (2010a) The development of the “Cambridge Trimaster” filament stretch and break-up device for the evaluation of ink jet fluids. J Rheol 54(2):261–282CrossRefGoogle Scholar
  65. Vadillo DC, Tuladhar TR, Mulji A, Mackley MR (2010b) The rheological characterisation of linear viscoelasticity for ink jet fluids using a Piezo Axial Vibrator (PAV) and Torsion Resonator (TR) rheometers. J Rheol 54(4):781–79CrossRefGoogle Scholar
  66. Vananroye A, Leen P, Van Puyvelde P, Clasen C (2011) TTS in LAOS: validation of time–temperature superposition under large amplitude oscillatory flow. Rheol Acta 50: 795–807CrossRefGoogle Scholar
  67. Yesilata B, Clasen C, McKinley GH (2006) Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions. J Non-Newton Fluid Mech 133:73–90CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Damien C. Vadillo
    • 1
    • 3
    Email author
  • Wouter Mathues
    • 2
  • Christian Clasen
    • 2
  1. 1.Department of Chemical Engineering and BiotechnologyUniversity of CambridgeCambridgeUK
  2. 2.Department of Chemical EngineeringUniversity of Leuven (KU Leuven)HeverleeBelgium
  3. 3.AkzoNobel Research, Development and InnovationGatesheadUK

Personalised recommendations