Skip to main content
Log in

Wall slip phenomena in concentrated ionic liquid-based magnetorheological fluids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) have been recently proposed as carrier for magnetorheological (MR) fluids. Their special properties, such as very low vapor pressure and high thermal stability, make ILs highly suitable dispersion media to increase the broad range of technological applications that magnetorheological fluids already have. It has been just reported that using ILs as carriers in MR fluids an improvement in the colloidal stability and suspension redispersibility is obtained. In this work, the magnetorheological behavior of highly concentrated suspensions in ILs is studied. Two kinds of suspensions were analyzed: using an ionic liquid of low conductivity and a mineral oil as carriers. In both cases, silica-coated iron microparticles were used as solid phase, being the solid volume concentration of 50% vol. A complete magnetorheological analysis focused on the wall slip phenomenon was performed. Steady-state and oscillatory experiments were carried out. In order to study wall slip effects, all experiments were performed with a plate–plate system, using both smooth and rough measuring surfaces. A significant effect of wall slip was observed when the experiments were performed using smooth surfaces. The novelty of this paper is mainly based on (1) the use of an ionic liquid as carrier to prepare magnetic suspensions, and (2) the analysis of wall slip phenomena in MR fluids with a particle content close to the maximum packing fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aral BK, Kalyon DM (1994) Effects of temperature and surface roughness on time-dependent development of wall slip in steady torsional flow of concentrated suspensions. J Rheol 38:957–972

    Article  CAS  Google Scholar 

  • Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  • Barnes HA (1989) Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33:329–366

    Article  CAS  Google Scholar 

  • Barnes HA (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J Non-Newton Fluid Mech 56:221–251

    Article  CAS  Google Scholar 

  • Bell RC, Miller ED, Karli JO, Vavreck AN, Zimmerman DT (2007) Influence of particle shape on the properties of magnetorheological fluids. Int J Mod Phys B 21:5018–5025

    Article  CAS  Google Scholar 

  • Beyersdorff T, Schubert TJS, Welz-Biermann U, Pitner W, Abbott AP, McKenzie KJ, Ryder S (2008) Electrodeposition from ionic liquids. Wiley, Weinheim

    Google Scholar 

  • Bossis G, Volkova O, Lacis S, Meunier A (2002) Magnetorheology: fluids, structures and rheology. In: Odenbach S (ed) Ferrofluids. Springer, Berlin, pp 202–230

    Google Scholar 

  • Buscall R (2010) Letter to the editor: wall slip in dispersion rheometry. J Rheol 54:1177–1184

    Article  CAS  Google Scholar 

  • Buscall R, McGowan JI, Morton-Jones AJ (1993) The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slip. J Rheol 37:621–642

    Article  CAS  Google Scholar 

  • Carlson JD (2000) Washing machine having a controllable field responsive damper. Patent no: US6151930A-2000-11-28

  • Charles SW (2002) The preparation of magnetic fluids. In: Odenbach S (ed) Ferrofluids. Springer, Berlin, pp 3–18

    Google Scholar 

  • Choi KM, Cho SW, Jung HJ, Lee IW (2004) Semi-active fuzzy control for seismic response reduction using magnetorheological dampers. Earthquake Eng Struct Dyn 33:723–736

    Article  Google Scholar 

  • Clavel G, Larionaova J, Guari Y, Guerin Ch (2006) Synthesis of cyano-bridged magnetic nanoparticles using room-temperature ionic liquids. Chem Eur J 12:3798–3804

    Article  CAS  Google Scholar 

  • De Vicente J, Vereda F, Segovia-Gutierrez JP, Morales MD, Hidalgo-Alvarez R (2010) Effect of particle shape in magnetorheology. J Rheol 54:1337–1361

    Article  Google Scholar 

  • Dodbiba G, Park HS, Okaya K, Fujita T (2008) Investigating magnetorheological properties of a mixture of two types of carbonyl iron powders suspended in an ionic liquid. J Magn Magn Mater 320:1322–1327

    Article  CAS  Google Scholar 

  • Durán JDG, Arias JL, Gallardo V, Delgado AV (2008) Magnetic colloids as drug vehicles. J Pharm Sci 97:2948–2983

    Article  Google Scholar 

  • Ginder JM (1998) Behavior of magnetorheological fluids. MRS Bull 23:26–29

    CAS  Google Scholar 

  • Gómez-Ramírez A, López-López MT, Durán JDG, González-Caballero F (2009) Influence of particle shape on the magnetic and magnetorheological properties of nanoparticle suspensions. Soft Mater 5:3888–3895

    Article  Google Scholar 

  • Gómez-Ramírez A, López-López MT, González-Caballero F, Durán JDG (2011) Stability of magnetorheological fluids in ionic liquids. Smart Mater Struct 20:045001–045010

    Article  Google Scholar 

  • Gregory T, Mayers S (1993) A note on slippage during the study of the rheological behaviour of paste inks. Surf Coat Int (JOCCA) 76:82–86

    CAS  Google Scholar 

  • Guerrero-Sánchez C, Erdmenger T, Sereda P, Wouters D, Schubert US (2006) Water-soluble ionic liquids as novel stabilizers in suspension polymerization reactions: engineering polymer beads. Chem Eur J 12:9036–9045

    Article  Google Scholar 

  • Guerrero-Sánchez C, Lara-Ceniceros T, Jimenez-Regalado E, Rasa M, Schubert US (2007) Magnetorheological fluids based on ionic liquid. Adv Mater 19:1740–1747

    Article  Google Scholar 

  • Guerrero-Sánchez C, Ortiz-Alvarado A, Schubert US (2009) Temperature effect on the magneto-rheological behavior of magnetite particles dispersed in an ionic liquid. In: 11th inter. conf. on electrorheological fluids and magnetorheological suspensions journal of physics: conference series, vol 149, pp 12052–12054

  • Isa L, Besseling R, Poon WCK (2007) Shear zones and wall slip in the capillary flow of concentrated colloidal suspensions. Phys Rev Lett 98:198305

    Article  Google Scholar 

  • Jordan TC, Shaw MT, McLeish TCB (1992) Viscoelastic response of electrorheological fluids. II. Field strength and strain dependence. J Rheol 36:441–464

    Article  CAS  Google Scholar 

  • Keskin S, Kayrak-Talay D, Akman U, Hortacsu Ö (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids 43:150–180

    Article  CAS  Google Scholar 

  • Khare V, Kraupner A, Mantion A, Jelicic A, Thünemann AF, Giordano C, Taubert A (2010) Stable iron carbide nanoparticle dispersions in [Emim][SCN] and [Emim][N(CN)2] ionic liquids. Langmuir 26:10600–10605

    Article  CAS  Google Scholar 

  • Klingenberg DJ (1993) Simulation of the dynamic oscillatory response of electrorheological suspensions: demonstration of a relaxation mechanism. J Rheol 37:199–214

    Article  CAS  Google Scholar 

  • Kuzhir P, López-López MT, Bossis G (2009) Magnetorheology of fiber suspension. II theory. J Rheol 53:127–152

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Laun HM, Gabriel C, Schmidt G (2008) Primary and secondary normal stress differences of a magnetorheological fluid (MRF) up to magnetic flux densities of 1 T. J Non-Newton Fluids Mech 148:47–56

    Article  CAS  Google Scholar 

  • López-López MT, Zugaldía A, González-Caballero F, Durán JDG (2006) Sedimentation and redispersion phenomena in iron-based magnetorheological fluids. J Rheol 50:543–560

    Article  Google Scholar 

  • López-López MT, Vertelov G, Kuzhir P, Bossis G, Durán JDG (2007) New magnetorheological fluids based on magnetic fibers. J Mater Chem 17:3839–3844

    Article  Google Scholar 

  • López-López MT, Kuzhir P, Durán JDG, Bossis G (2010) Normal stresses in a shear flow of magnetorheological suspensions: viscoelastic versus Maxwell stresses. J Rheol 54:1119–1136

    Article  Google Scholar 

  • McLeish TCB, Jordan T, Shaw MT (1991) Viscoelastic response of electrorheological fluids. I. Frequency dependence. J Rheol 35:427–448

    Article  CAS  Google Scholar 

  • Odenbach S (2003) Ferrofluids-magnetically controlled suspensions. Colloids Surf A Physicochem Eng Asp 217:171–178

    Article  CAS  Google Scholar 

  • Oliveira FC, Rossi LM, Jardim RF, Rubim JC (2009) Magnetic fluids based on γ-Fe2O3 and CoFe2O4 nanoparticles dispersed in ionic liquids. J Phys Chem C 113:8566–8572

    Article  CAS  Google Scholar 

  • Park BJ, Fang FF, Choi HJ (2010) Magnetorheology: materials and application. Soft Mater 6:5246–5253

    Article  CAS  Google Scholar 

  • Parthasarathy M, Klingenberg DJ (1996) Electrorheology: mechanisms and models. Mater Sci Eng 17:57–103

    Article  Google Scholar 

  • Parthasarathy M, Ahn KH, Belongia BM, Klingenberg DJ (1994) The role of suspension structure in the dynamic response of electrorheological suspensions. Int J Mod Phys B 8:2789–2809

    Article  CAS  Google Scholar 

  • Persello J, Magnin A, Chang J, Piau JM, Cabane B (1994) Flow of colloidal aqueous silica dispersions. J Rheol 38:1845–1870

    Article  CAS  Google Scholar 

  • Phulé PP, Ginder JM (1998) Magneto-rheological suspensions and their applications. In: Nakano M, Koyama K (eds) Proc 6th int conference on electro-rheological fluids. World Scientific, Singapore, pp 445–453

    Google Scholar 

  • Pignon F, Magnin A, Piau JM (1996) Thixotropic colloidal suspensions and flow curves with minimum: identification of flow regimes and rheometric consequences. J Rheol 40:573–588

    Article  CAS  Google Scholar 

  • Rodriguez-Arco L, López-López MT, González-Caballero F, Durán JDG (2011) Steric repulsion as a way to achieve the required stability for the preparation of ionic liquid-based ferrofluid. J Colloid Interface Sci 357:252–254

    Article  CAS  Google Scholar 

  • Ross C (2001) Patterned magnetic recording media. Annu Rev Mater Res 31:203–235

    Article  CAS  Google Scholar 

  • Russel WB, Grant MC (2000) Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersion. Colloids Surf A 161:271–282

    Article  CAS  Google Scholar 

  • Seddon KR, Stark A, Torres MJ (2000) Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem 72:2275–2287

    Article  CAS  Google Scholar 

  • Slattery JM, Daguenet C, Dyson PJ, Schubert TJS, Krossing I (2007) How to predict the physical properties of ionic liquids: a volume-based approach. Angew Chem Int Ed 46:5384–5388

    Article  CAS  Google Scholar 

  • Tartaj P, Morales M, Veintenillas-Verdaguer S, González-Carreño T, Serna CJ (2003) Review the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys 36:R182–R197

    Article  Google Scholar 

  • Tsukasa T, Tsuda T, Okazaki K, Kuwabate S (2010) New frontiers in materials science opened by ionic liquid. Adv Mater 22:1196–1221

    Article  Google Scholar 

  • Ueno K, Inaba A, Kondoh M, Watanabe M (2008) Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids. Langmuir 24:5253–5259

    Article  CAS  Google Scholar 

  • Volkova O, Bossis G, Guyot M, Bashtovoi V, Reks A (2000) Magnetorheology of magnetic holes compared to magnetic particles. J Rheol 44:91–104

    Article  CAS  Google Scholar 

  • Walls HJ, Caines SB, Sanchez AM, Khan SA (2003) Yield stress and wall slip phenomena in colloidal silica gels. J Rheol 47:847–866

    Article  CAS  Google Scholar 

  • Wereley NM, Hu W, Kothera CS Chen P (2009) Magnetorheological fluids elastic lag damper for helicopter rotors. Patent no.: US2009218443 (A1)-2009-09-03

  • Wilkes JS, Zaworotko JM (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Chem Commun 13:965–966

    Google Scholar 

Download references

Acknowledgements

Financial support by Ministerio de Ciencia e Innovación (Spain) under project FIS2009-07321 and by Junta de Andalucía (Spain) under projects P08-FQM-3993 and P09-FQM-4787 is gratefully acknowledged. AG-R and MTLL acknowledge financial support by Secretaría de Estado de Universidades e Investigación (MEC, Spain) through its FPU program and by Universidad de Granada (Spain), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Gómez-Ramírez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Ramírez, A., López-López, M.T., González-Caballero, F. et al. Wall slip phenomena in concentrated ionic liquid-based magnetorheological fluids. Rheol Acta 51, 793–803 (2012). https://doi.org/10.1007/s00397-012-0639-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0639-5

Keywords

Navigation