Skip to main content
Log in

Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The diffusion process in the molten state at a polymer/polymer interface of symmetrical and model bilayers has been investigated using a small-amplitude oscillatory shear measurement. The polymers employed in this study were poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA) of varying molecular weights and polydispersities. The measurements were conducted in the linear viscoelastic regime (small deformations) so as to decouple the effect of flow from the diffusion. The focus of this paper has been to investigate the effects of healing time, angular frequency (ω), temperature, and molecular weight on the inter-diffusion and the triggered interphase between the neighboring layers. The kinetics of diffusion, based on the evolution of the apparent diffusion coefficient (D a) versus the healing time, was experimentally obtained. The transition from the non-Fickian to the normal Fickian region for the inter-diffusion at the interface was clearly observed, qualitatively consistent with the reptation model, but it occurred at a critical time greater than the reptation time (τ rep). In non-Fickian region, effects of frequency and temperature were studied with regard to the ratio of the apparent diffusion coefficient to the self-diffusion coefficient (D a/D s). The D s determined in the Fickian region was found to be consistent with Graessley’s model as well as with the literatures. And the dependence of the Ds on the frequency agreed well with the Doi–Edwards theory, in particular, scaling as \(D_{\rm s} \sim \omega^{1/2}\) at ω > 1/τ e and \(D_{\rm s} \sim \omega^{0}\) at ω < 1/τ rep. Our experimental results also confirmed that the dependence of the D s on the temperature for PMMA and PVDF can be well described by the Arrhenius law. Moreover, blends of PMMAs have been proposed in order to be able to change the \(\overline M_\emph{w} \). The rheological investigations of these corresponding bilayers rendered it possible to monitor the effect of \(\overline M_\emph{w} \) on the diffusion process. The obtained results gave \(D_{\rm s} \sim \overline M_\emph{w}^{-1}\), thus corroborating some earlier studies and some experimental results recently reported by Time-Resolved Neutron Reflectivity Measurements. Lastly, the thickness of the interphase and its corresponding viscoelastic properties could be theoretically determined as a function of the healing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ansari M, Hatzikiriakos SG, Sukhadia AM, Rohlfing DC (2011) Rheology of Ziegler–Natta and metallocene high-density polyethylenes: broad molecular weight distribution effects. Rheol Acta 50:17–27

    Article  CAS  Google Scholar 

  • Appel M, Fleischer G, Kaerger J, Fujara F, Chang I (1994) Anomalous segment diffusion in polymer melts. Macromolecules 27:4274–4277

    Article  CAS  Google Scholar 

  • Bella R, Cassagnau P, Fenouillot F, Falk L, Lacoste C (2006) Diffusion of liquids in molten polymers: mutual diffusion coefficient dependence on liquid miscibility and polymer molar mass. Polymer 47:5080–5089

    Article  CAS  Google Scholar 

  • Bousmina M, Qiu H, Grmela M, Klemberg-Sapieha JE (1998) Diffusion at polymer/polymer interfaces probed by rheological tools. Macromolecules 31:8273–8280

    Article  CAS  Google Scholar 

  • Composto RJ, Kramer EJ, White DM (1988) Mutual diffusion in the miscible polymer blend polystyrene/poly(xylenyl ether). Macromolecules 21:2580–2588

    Article  CAS  Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd ed. Clarendon, Oxford

    Google Scholar 

  • Crist B, Green PF, Jones RAL, Kramer EJ (1989) Self-diffusion of hydrogenated polybutadiene by forward recoil spectroscopy. Macromolecules 22:2857–2858

    Article  CAS  Google Scholar 

  • de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572

    Article  Google Scholar 

  • Dealy JM, Larson RG (2006) Structure and rheology of molten polymers: from structure to flow behavior and back again. Hanser, Munich

    Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford, pp 189–234

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  • Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27(17):4639–4647

    Article  CAS  Google Scholar 

  • Fox TG (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  • Fuchs K, Friedrich C, Weese J (1996) Viscoelastic properties of narrow-distribution poly(methyl methacrylates). Macromolecules 29:5893–5901

    Article  CAS  Google Scholar 

  • Gilmore PT, Falabella R, Laurence RL (1980) Polymer/polymer diffusion. 2. Effect of temperature and molecular weight on macromolecular diffusion in blends of poly(vinyl chloride) and poly(\(\upvarepsilon\)-caprolactone). Macromolecules 13(4):880–883

    Article  CAS  Google Scholar 

  • Graessley WW (1980) Some phenomenological consequences of the Doi–Edwards theory of viscoelasticity. J Polym Sci Polym Phys Ed 18:27–34

    Article  CAS  Google Scholar 

  • Green PF, Doyle BL (1987) Thermodynamic slowing down of mutual diffusion in isotopic polymer mixtures. Macromolecules 20:2471–2474

    Article  CAS  Google Scholar 

  • Green PF, Russell TP, Jerome R, Granville M (1988) Diffusion of homopolymers into nonequilibrium block copolymer structures. 1. Molecular weight dependence. Macromolecules 21:3266–3273

    Article  CAS  Google Scholar 

  • Han CD, Kim JK (1989) Molecular theory for the viscoelasticity of compatible polymer mixtures. 1. A tube model approach. Macromolecules 22:1914–1921

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG (2012) Wall slip of molten polymers. Prog Polym Sci 37:624–643

    Article  CAS  Google Scholar 

  • Hellmann EH, Hellmann GP, Rennie AR (1991) Chain fragment diffusion in liquid and glassy polymer blends. Macromolecules 24:3821–3827

    Article  CAS  Google Scholar 

  • Honerkamp J, Weese J (1993) A nonlinear regularization method for the calculation of relaxation spectra. Rheol Acta 32(1):65–73

    Article  CAS  Google Scholar 

  • Joubert C, Cassagnau P, Michel A, Choplin L (2002) Diffusion of plasticizer in elastomer probed by rheological analysis. J Rheol 46(3):629

    Article  CAS  Google Scholar 

  • Jud K, Kausch HH, Williams JG (1981) Fracture mechanics studies of crack healing and welding of polymers. J Mater Sci 16:204–210

    Article  CAS  Google Scholar 

  • Karim A, Mansour A, Felcher GP, Russell TP (1990) Short-time relaxation at polymeric interfaces. Phys Rev B 42:6846–6849

    Article  CAS  Google Scholar 

  • Kawaguchi D, Nelson A, Masubuchi Y, Majewski JP, Torikai N, Yamada NL, Sarah ARS, Takano A, Matsushita Y (2011) Precise analyses of short-time relaxation at asymmetric polystyrene interface in terms of molecular weight by time-resolved neutron reflectivity measurements. Macromolecules 44(23):9424–9433

    Article  CAS  Google Scholar 

  • Kim JK, Han CD (1991) Polymer–polymer interdiffusion during coextrusion. Polym Eng Sci 31(4):258–269

    Article  CAS  Google Scholar 

  • Klein J (1978) Evidence for reptation in an entangled polymer melt. Nature 271:143–145

    Article  CAS  Google Scholar 

  • Klein J, Briscoe BJ (1979) The diffusion of long-chain molecules through bulk polyethylene. Proc R Soc Lond A 365:53–73

    Article  CAS  Google Scholar 

  • Kumagai Y, Watanabe H, Miyasaka K, Hata T (1979) Diffusion measurement of tritium labeled polystyrene in polymer bulk-effect of molecular weight on diffusion coefficient. J Chem Eng Jpn 12:1–4

    Article  CAS  Google Scholar 

  • Kunz K, Stamm M (1996) Initial stages of interdiffusion of PMMA across an interface. Macromolecules 29:2548–2554

    Article  CAS  Google Scholar 

  • Lamnawar K, Maazouz A (2006) Rheological study of multilayer functionalized polymers: characterization of interdiffusion and reaction at polymer/polymer interface. Rheol Acta 45:411–424

    Article  CAS  Google Scholar 

  • Lamnawar K, Maazouz A (2008) Rheology and morphology of multilayer reactive polymers: effect of interfacial area in interdiffusion/reaction phenomena. Rheol Acta 47:383–397

    Article  CAS  Google Scholar 

  • Lamnawar K, Maazouz A (2009) Role of the interphase in the flow stability of reactive coextruded multilayer polymers. Polym Eng Sci 49:727–739

    Article  CAS  Google Scholar 

  • Lamnawar K, Baudoin A, Maazouz A (2010) Interdiffusion/reaction at the polymer/polymer interface in multilayer systems probed by linear viscoelasticity coupled to FTIR and NMR measurements. Eur Polym J 46:1604–1622

    Article  CAS  Google Scholar 

  • Lamnawar K, Bousmina M, Maazouz A (2012) 2D Encapsulation in multiphase polymers: role of viscoelasticity, geometrical and interfacial properties. Macromolecules 45:441–454

    Article  CAS  Google Scholar 

  • Li J, Ma G, Sheng J (2011) Phase structure characterization by SALS of in situ compatiblized binary polymer blends and its relation to rheology. J Macromol Sci Part B Phys 50:741–761

    Article  CAS  Google Scholar 

  • Liu Y, Reiter G, Kunz K, Stamm M (1993) Investigation of the interdiffusion between poly (methyl methacrylate) films by marker movement. Macromolecules 26(8):2134–2136

    Article  CAS  Google Scholar 

  • Mead DW (1994) Numerical interconversion of linear viscoelastic material functions. J Rheol 38(6):1769

    Article  CAS  Google Scholar 

  • Mhetar VR, Archer LA (1998) Slip in entangled polymer melts. 1. General features. Macromolecules 31:8607–8616

    Article  CAS  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210–222

    Article  CAS  Google Scholar 

  • Msakni A, Chaumont P, Cassagnau P (2007) Diffusion of the dicumyl peroxide in molten polymer probed by rheology. Rheol Acta 46:933–943

    Article  CAS  Google Scholar 

  • Pahl S, Fleischer G, Fujara F, Geil B (1997) Anomalous segment diffusion in polydimethylsiloxane melts. Macromolecules 30:1414–1418

    Article  CAS  Google Scholar 

  • Plazek DJ (1982) The temperature dependence of the viscoelastic softening and terminal dispersions of linear amorphous polymers. J Polym Sci Polym Phys Ed 20:729–742

    Article  CAS  Google Scholar 

  • Qiu H, Bousmina M (1999) New technique allowing the quantification of diffusion at polymer/polymer interfaces using rheological analysis: theoretical and experimental results. J Rheol 43(3):551–568

    Article  CAS  Google Scholar 

  • Qiu H, Bousmina M (2000) Determination of mutual diffusion coefficients at nonsymmetric polymer/polymer interfaces from rheometry. Macromolecules 33:6588–6594

    Article  CAS  Google Scholar 

  • Qiu H, Bousmina M (2002) Molecular weight polydispersity effects on diffusion at polymer/polymer interfaces. Can J Chem Eng 80:1206–1213

    Article  CAS  Google Scholar 

  • Qiu H, Bousmina M, Dealy JM (2002) Coupling between flow and diffusion at polymer/polymer interfaces: large amplitude oscillatory shear experiments. Rheol Acta 41:87–92

    Article  CAS  Google Scholar 

  • Rahim MA, Choi WS, Lee HJ, Park JB, Jeon IC (2011) Unusual growth of polyelectrolyte multilayers by introduction of a rugged multilayer template and their unique adsorption behaviors. Polymer 52:3112–3117

    Article  CAS  Google Scholar 

  • Reiter G, Steiner U (1991) Measurements of polymer diffusion over small distances. A check of reptation arguments. J Phys II (Journal de Physique II) 1:659–671

    Google Scholar 

  • Shearmur TE, Clough AS, Drew DW, van der Grinten MGD, Jones RAL (1998) Interdiffusion of deuterated and protonated poly(methyl methacrylate). Polymer 39(11):2155–2159

    Article  CAS  Google Scholar 

  • Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers.1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643

    Article  CAS  Google Scholar 

  • Van Alsten JG, Lustig SR (1992) Polymer mutual diffusion measurements using infrared ATR spectroscopy. Macromolecules 25:5069–5073

    Article  Google Scholar 

  • Welch GJ (1974) Solution properties and unperturbed dimensions of poly (vinylidene fluoride). Polymer 15:429

    Article  CAS  Google Scholar 

  • Wool RP (1995) Polymer interfaces: structure and strength. Hanser, New York

    Google Scholar 

  • Wool RP, O’Connor KM (1981) A theory crack healing in polymers. J Appl Phys 52:5953–5963

    Article  CAS  Google Scholar 

  • Wu S (1989) Chain structure and entanglement. J Polym Sci Polym Phys Ed 27:723–741

    Article  CAS  Google Scholar 

  • Wu S, Chuang HK, Han CD (1986) Diffuse interface between polymers: structure and kinetics. J Polym Sci Polym Phys Ed 24:143–159

    Article  CAS  Google Scholar 

  • Wu DY, Meure S, Solomon D (2008) Self-healing polymeric materials: a review of recent developments. Prog Polym Sci 33:479–522

    Article  CAS  Google Scholar 

  • Xu S, Wen M, Li J, Guo S, Wang M, Du Q, Shen J, Zhang Y, Jiang S (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49:4861–4870

    Article  CAS  Google Scholar 

  • Yang L, Suo T, Niu Y, Wang Z, Yan D, Wang H (2010) Effects of phase behavior on mutual diffusion at polymer layers interface. Polymer 51:5276–5281

    Article  CAS  Google Scholar 

  • Zhao R, Macosko CW (2007) Polymer–polymer mutual diffusion via rheology of coextruded multilayers. AIChE J 53(4):978–985

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their appreciation to the reviewers for their constructive and meticulous assessment of this work. They thank ARKEMA for providing the PMMA and PVDF samples. H. Zhang also thanks China Scholarship Council (CSC) for providing the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrahim Maazouz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Lamnawar, K. & Maazouz, A. Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights. Rheol Acta 51, 691–711 (2012). https://doi.org/10.1007/s00397-012-0629-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0629-7

Keywords

Navigation