Skip to main content
Log in

Perturbation solutions of weakly compressible Newtonian Poiseuille flows with Navier slip at the wall

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

We consider both the planar and axisymmetric steady, laminar Poiseuille flows of a weakly compressible Newtonian fluid assuming that slip occurs along the wall following Navier’s slip equation and that the density obeys a linear equation of state. A perturbation analysis is performed in terms of the primary flow variables using the dimensionless isothermal compressibility as the perturbation parameter. Solutions up to the second order are derived and compared with available analytical results. The combined effects of slip, compressibility, and inertia are discussed with emphasis on the required pressure drop and the average Darcy friction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Arkilic EB, Schmidt MA (1997) Gaseous slip flow in long microchannels. J MEMS 6:167–178

    CAS  Google Scholar 

  • Beskok A, Karniadakis GE (1999) Simulation of heat and momentum transfer in complex micro-geometries. J Thermophys Heat Transfer 8:355–377

    Google Scholar 

  • Denn MM (2001) Extrusion instabilities and wall slip. Ann Rev Fluid Mech 33:265–287

    Article  Google Scholar 

  • Dubbeldam JLA, Molenaar J (2003) Dynamics of the spurt instability in polymer extrusion. J Non-Newton Fluid Mech 112:217–235

    Article  CAS  Google Scholar 

  • Felderhof BU, Ooms G (2011) Flow of a viscous compressible fluid produced in a circular tube by an impulsive point source. J Fluid Mech 668:100–112

    Article  Google Scholar 

  • Georgiou G (2005) Stick-slip instability. Chapter 7. In: Hatzikiriakos SG, Migler K (eds) Polymer processing instabilities: control and understanding. Mercel Dekker, Inc., pp 161–206

  • Georgiou GC, Crochet MJ (1994) Compressible viscous flow in slits with slip at the wall. J Rheol 38:639–654

    Article  Google Scholar 

  • Guaily A, Cheluget E, Lee K, Epstein M (2011) A new hyperbolic model and an experimental study for the flow of polymer melts in multi-pass rheometer. Comp Fluids 44:258–266

    Article  Google Scholar 

  • Hatzikiriakos SG (2012) Wall slip of molten polymers. Progr Polym Sci 37:624–643

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1992) Role of slip and fracture in the oscillating flow of a HDPE in a capillary. J Rheol 36:845–884

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1994) Start-up pressure transients in a capillary rheometer. Polym Eng Sci 34:493–499

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Migler K (2005) Polymer processing instabilities: control and understanding. Mercel Dekker, New York

    Google Scholar 

  • Housiadas K, Georgiou GC (2011) Perturbation solution of Poiseuille flow of a weakly compressible Oldroyd-B fluid. J Non-Newton Fluid Mech 166:73–92

    Article  CAS  Google Scholar 

  • Housiadas KD, Georgiou GC, Mamoutos IG (2012) Laminar axisymmetric flow of a weakly compressible viscoelastic fluid. Rheol Acta doi:10.1007/s00397-011-0610-x

    Google Scholar 

  • Kohl MJ, Abdel-Khalik SI, Jeter SM, Sadowski DL (2005) An experimental investigation of microchannel flow with internal pressure measurements. Int J Heat Mass Transfer 48:1518–1533

    Article  Google Scholar 

  • Mitsoulis E, Hatzikiriakos SG (2009) Steady flow simulations of compressible PTFE paste extrusion under severe wall slip. J Non-Newton Fluid Mech 157:26–33

    Article  CAS  Google Scholar 

  • Piau JM, El Kissi N (1994) Measurement and modelling of friction in polymer melts during macroscopic slip at the wall. J Non-Newton Fluid Mech 54:121–142

    Article  CAS  Google Scholar 

  • Poyiadji S (2012) Flows of fluids with pressure-dependent material properties. PhD Thesis, University of Cyprus

  • Qin FH, Sun DJ, Yin XY (2007) Perturbation analysis on gas flow in a straight microchannel. Phys Fluids 19:027103

    Article  Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  • Taliadorou E, Georgiou E, Alexandrou AN (2007) A two-dimensional numerical study of the stick-slip extrusion instability. J Non-Newton Fluid Mech 146:30–44

    Article  CAS  Google Scholar 

  • Taliadorou E, Georgiou GC, Mitsoulis E (2008) Numerical simulation of the extrusion of strongly compressible Newtonian liquids. Rheol Acta 47:49–62

    Article  CAS  Google Scholar 

  • Taliadorou E, Neophytou M, Georgiou GC (2009) Perturbation solutions of Poiseuille flows of weakly compressible Newtonian liquids. J Non-Newton Fluid Mech 158:162–169

    Article  CAS  Google Scholar 

  • Tang HS, Kalyon DM (2008a) Unsteady circular tube flow of compressible polymeric liquids subject to pressure-dependent wall slip. J Rheol 52:507–525

    Article  CAS  Google Scholar 

  • Tang HS, Kalyon DM (2008b) Time-dependent tube flow of compressible suspensions subject to pressure-dependent wall slip: ramifications on development of flow instabilities. J Rheol 52:1069–1090

    Article  CAS  Google Scholar 

  • Venerus DC (2006) Laminar capillary flow of compressible viscous fluids. J Fluid Mech 555:59–80

    Article  Google Scholar 

  • Venerus DC, Bugajsky DJ 2010 Laminar flow in a channel. Phys Fluids 22:046101

    Article  Google Scholar 

  • Vinay G, Wachs A, Frigaard I (2006) Numerical simulation of weakly compressible Bingham flows: the restart of pipeline flows of waxy crude oils. J Non-Newton Fluid Mech 136:93–105

    Article  CAS  Google Scholar 

  • Wachs A, Vinay G, Frigaard I (2009) A 1.5D numerical model for the start up of weakly compressible flow of a viscoplastic and thixotropic fluid in pipelines. J Non-Newton Fluid Mech 159:81–94

    Article  CAS  Google Scholar 

  • Zhang TT, Jia L, Wang ZC, Li CW (2009) Slip flow characteristics of compressible gaseous in microchannels. Energy Conv Manage 50:1676–1682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios C. Georgiou.

Appendix

Appendix

In the case of compressible, axisymmetric Newtonian Poiseuille flow with slip at the wall, the perturbation solution is as follows:

$$ \begin{array}{rll} u_z \!\left( {r,z} \right)&\!=\!&\frac{\overline B }{4B}\left( {B\!+\!2\!-\!Br^2} \right) \\ && \!+ \varepsilon \!\left[\!{ -\frac{{{{\bar{B}}^2}}}{{32B}} \!\left(\!{B\!+\!2\!-\!Br^2}\right)\! \left({1\!-\!z}\right)} \!+\! \frac{\alpha Re\overline B^4}{73728B^2} \!\left[\!- 2\!\left(\!{B^2 \!+\! 10B \!+\! 24} \right)\!+\!9\!\left(\!{B^2 \!+\! 6B \!+\! 8} \right) \! r^2 \!-\! 9 \!\left(\!{B^2\!+\!8B\!+\!16}\right)r^4 \!+\! 2\left( {B^2\!+\!4B} \right)r^6 \right] \!\right]\\ && +\ \varepsilon^2\left[\!{\frac{3\overline B^3}{512B} \left({B \!+\! 2 \!-\! Br^2} \right)\left( {1\!-\!z} \right)^2} - \frac{\alpha Re{{\bar{B}}^5} }{196608B^4} \right.\\ && \qquad\;\; \times \left[\!B^4 \!+\! 10B^3 \!+\! 72B^2 \!+\! 240B \!+\! 192 \!+\! 6\!\left(\!{B^4 \!+\! 8B^3 \!+\! 12B^2 \!-\! 16B}\right)\!r^2 \!-\! 9 \!\left(\!{B^4 \!+\! 6B^3 \!+\! 8B^2} \right)\!r^4 \!+\! 2\! \left(\!{B^4 \!+\! 4B^3} \right)\!r^6 \right] \\ && \qquad \quad \;\;\times \left({1\!-\!z}\right) +\frac{\alpha^2\overline B^4}{294912B^2}\left[B^2+32B-48-4\left( {7B^2+48B} \right)r^2 +27 \left({B^4+4B^3} \right)r^4\right] +\frac{\alpha^2Re^2\overline B^7}{459848300B^5} \\ &&\qquad \;\;\times \left[43B^5 \!+\! 774B^4 \!+\! 1328B^3 \!-\! 42720B^2 \!-\! 268800B \!-\! 460800 \! -\! 200\!\left(5B^5 \!+\! 80B^4 \!+\! 360B^3 \!-\! 96B^2 \!-\! 4032B \!-\! 6912 \right)r^2 \right.\\ &&\qquad \quad \;\; +100\left(33B^5 \!+\! 462B^4 \!+\! 2112B^3 \!+\! 2736B^2 \!-\! 3456B \!-\! 6912 \right)r^4 \!-\! 1200\left({3B^5 \!+\! 36B^4 \!+\! 148B^3 \!+\! 224B^2 \!+\! 64B} \right)r^6 \\ && \qquad\quad \;\;\left. \left. +1425\left({B^5+10B^4+32B^3+32B^2} \right)r^8-168 \left( {B^5+8B^4+16B^3} \right)r^{10} \right] \!\vphantom{\frac{3\overline B^2}{512B}}\right]+O\left( {\varepsilon^3} \right) \end{array} $$
(50)
$$ u_r \left( r \right)=\varepsilon^2\frac{\alpha Re\overline B^5}{1179648B^2}r\left( {1-r^2} \right) \left[4\left( {B^2+10B+24} \right) -\left( {5B^2+32B+48} \right)r^2+\left( {B^2+4B} \right)r^4 \right]+O\left( {\varepsilon^3} \right) $$
(51)
$$ \begin{array}{rll} p\left( {r,z} \right)&=&\frac{\overline B }{8}\left( {1-z} \right)+\varepsilon \left[-\frac{\overline B^2}{128}\left( {1-z} \right)^2+\frac{\alpha Re\overline B^4}{16384B^3} \left( B^3+8B^2+24B+32 \right)\left( {1-z} \right)+\frac{\alpha^2\overline B^2}{768} \left({1-r^2} \right) \right]\\&& +\ \varepsilon^2\left[ -\frac{\overline B^3}{1024}\left( {1-z} \right)^3-\frac{\alpha Re\overline B ^5}{65536B^3} \left({B^3+8B^2+24B+32} \right)\left( {1-z} \right)^2 -\frac{\alpha^2\overline B^4}{147456B^2} \right.\\ && \qquad\;\; \times \left[ 29B^2+168B+228-9\left( {B^2+4B} \right)r^2 \right]\left( {1-z} \right) +\frac{\alpha^2Re^2\overline B^7}{113246208B^6} \\ && \qquad \;\;\times \left( 2B^6+32B^5+267B^4+1332B^3 +3672B^2+5184B+3456\right) \left({1-z} \right) +\frac{\alpha^3Re\overline B^5}{14155776B^3} \\ && \qquad\;\; \times \left. \left[ 19B^3+202B^2+576B+288-18 \left({3B^3+24B^2+52B+16} \right)r^2+45\left( {B^3+6B^2+8B} \right)r^4\right.\right.\\ && \qquad\qquad \;\!\left.\left. -10\left({B^3+4B^2} \right)r^6 \right] \vphantom{\frac{\overline B^2}{128}}\right]+O\left( {\varepsilon^3} \right) \end{array} $$
(52)
$$ \rho \left( {r,z} \right) = 1 + \varepsilon \frac{{\bar{B}}}{8}\left( {1 - z} \right) + {\varepsilon ^2}\left[ { - \frac{{{{\bar{B}}^2}}}{{128}}{{\left( {1 - z} \right)}^2} + \frac{{\alpha Re{{\bar{B}}^4}}}{{16384{B^3}}}\left( {{B^3} + 8{B^2} + 24B + 32} \right)\left( {1 - z} \right)\frac{{{\alpha ^2}{{\overline \beta }^2}}}{{768}}\left( {1 - {r^2}} \right)} \right] + O\left( {{\varepsilon ^3}} \right) $$
(53)

In the above solution, z* is scaled by the tube length L*, r* by the tube radius R*, the axial velocity by \(U^\ast =\dot{{M}}^\ast /\left( {\pi \rho _0^\ast R^{\ast 2}} \right)\), the radial velocity by U  ∗  R  ∗ /L  ∗ , and the pressure by 8η  ∗  L  ∗  U  ∗ /R  ∗ 2. The dimensionless numbers are defined as follows:

$$ \begin{array}{rll} \alpha &\equiv& \frac{R^\ast }{L^\ast },\quad Re \equiv \frac{\rho_0^\ast U^\ast R^\ast }{\eta^\ast },\quad \varepsilon \equiv \frac{8\kappa^\ast \eta^\ast L^\ast U^\ast }{R^{\ast 2}},\\ B&\equiv& \frac{\beta^\ast R^\ast }{\eta^\ast },\quad \overline B \equiv \frac{8B}{B+4} \end{array} $$
(54)

The volumetric flow rate,

$$ Q\left( z \right)\equiv 2\int_0^1 {u_z \left( {r,z} \right)rdr} $$
(55)

is given by

$$ \begin{array}{rll} Q\left( z \right)&\!=\!&1\!-\!\varepsilon \frac{\overline B }{8}\left( {1-z} \right)\\ && +\thinspace\varepsilon^2\!\left[\!\frac{3\overline B^2}{128}\!\left({1\!-\!z}\right)^2\!-\! \frac{\alpha Re\overline B^3}{2048B^2}\!\left({B^2\!+\!4B\!+\!8}\right)\left( {1\!-\!z} \right)\right.\\ && \qquad \left. -\frac{\alpha^2\overline B^3}{9216B}\left({B+3} \right) \right]+O\left( {\varepsilon^3} \right) \end{array} $$
(56)

For ε = 0 the standard fully-developed Poiseuille flow solution with slip at the wall is recovered with

$$ u_z \left( r \right)=\frac{\overline B }{2B}+\frac{\overline B }{4}\left( {1-r^2} \right) $$
(57)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poyiadji, S., Georgiou, G.C., Kaouri, K. et al. Perturbation solutions of weakly compressible Newtonian Poiseuille flows with Navier slip at the wall. Rheol Acta 51, 497–510 (2012). https://doi.org/10.1007/s00397-012-0618-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0618-x

Keywords

Navigation