Rheologica Acta

, Volume 50, Issue 7–8, pp 645–653 | Cite as

Prediction of steady-state viscous and elastic properties of polyolefin melts in shear and elongation

  • Víctor Hugo Rolón-GarridoEmail author
  • Julia Antonia Resch
  • Friedrich Wolff
  • Joachim Kaschta
  • Helmut Münstedt
  • Manfred H. Wagner
Original Contribution


The linear and nonlinear steady-state viscosities and elastic compliances were measured in shear and elongational flows for two low-density polyethylenes, a linear polypropylene, and two metallocene catalyzed polyethylenes (one linear and one long-chain branched) by Wolff et al. (Rheol Acta 49:95–103, 2010) and Resch (dissertation, 2010). Comprehensive data of this type are rarely found in the literature, and comprehensive modeling of both viscous and elastic effects is even rarer. In this contribution, the reliability of a modeling approach proposed by Laun (J Rheol 30(3):459–501, 1986) and based on the damping function concept is tested. The strain hardening seen for the long-chain branched polymers and its absence in the case of the linear polymer, the stronger decrease of the tensile compliance in comparison to the shear compliance with increasing stress, as well as the extended linear-viscoelastic regime of the shear viscosity in contrast to the shear compliance are correctly modeled. While the modeling of the nonlinear response in shear can be achieved with only one material parameter for most of the polymers considered here, the nonlinear modeling in elongation is achieved with two parameters. The same parameter values are shown to describe viscous as well as elastic properties of the melts, and thus the relations of Laun can be used to test the consistency of viscosity and compliance measurements.


Rheology Creep experiments Shear flow Elongational flow Damping function Strain hardening Low-density polyethylene Polymer melts 



Financial support by the German Science Foundation (DFG) is gratefully acknowledged.


  1. Chen X, Stadler FJ, Münstedt H, Larson RG (2010) Method for obtaining tube model parameters for commercial ethane/α-olefin copolymers. J Rheol 54(2):393–406.CrossRefGoogle Scholar
  2. Dealy JM, Larson RG (2006) Structure and rheology of molten polymers from structure to flow behavior and back again. Hanser, GermanyGoogle Scholar
  3. Franck A, Meissner J (1984) The influence of blending polystyrenes of narrow molecular weight distribution on melt creep flow and creep recovery in elongation. Rheol Acta 23:117–123CrossRefGoogle Scholar
  4. Gabriel C, Kaschta J (1998) Comparison of different shear rheometers with regard to creep and creep recovery measurements. Rheol Acta 37:358–364CrossRefGoogle Scholar
  5. Gabriel C, Kaschta J, Münstedt H (1998) Influence of molecular structure on rheological properties of polyethylenes. I. Creep recovery measurements in shear. Rheol Acta 37:7–20CrossRefGoogle Scholar
  6. Gabriel C, Münstedt H (1999) Creep recovery behaviour of metallocene linear low-density polyethylenes. Rheol Acta 38:393–403CrossRefGoogle Scholar
  7. He C, Wood-Adams P, Dealy JM (2004) Broad frequency range characterization of molten polymers. J Rheol 48(4):711–724CrossRefGoogle Scholar
  8. Karam HJ, Bellinger JC (1964) Tensile creep of polystyrene at elevated temperatures. Part I. Trans Soc Rheol 8:61–72CrossRefGoogle Scholar
  9. Kaschta J, Schwarzl FR (1994a) Calculation of discrete retardation spectra from creep data—I. Method Rheol Acta 33(6):517–529CrossRefGoogle Scholar
  10. Kaschta J, Schwarzl FR (1994b) Calculation of discrete retardation spectra from creep data—II. Analysis of measured creep curves. Rheol Acta 33(6):530–541CrossRefGoogle Scholar
  11. Kessner U, Kaschta J, Münstedt H (2009) Determination of method-invariant activation energies of long-chain branched low-density polyethylenes. J Rheol 53(4):1001–1016CrossRefGoogle Scholar
  12. Kraft M, Meissner J, Kaschta J (1999) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromolecules 32:751–757CrossRefGoogle Scholar
  13. Kurzbeck S, Oster F, Münstedt H (1999) Rheological properties of two polypropylenes with different molecular structure. J Rheol 43(2):359–374CrossRefGoogle Scholar
  14. Laun HM (1978) Description of the non-linear shear behaviour of a low density polyethylene melt by means of an experimentally determined strain dependent memory function. Rheol Acta 17:1–15CrossRefGoogle Scholar
  15. Laun MH (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30(3):459–501CrossRefGoogle Scholar
  16. Laun HM, Meissner J (1980) A sandwich-type creep rheometer for the measurement of rheological properties of polymer melts at low shear stresses. Rheol Acta 19:60–67CrossRefGoogle Scholar
  17. Laun HM, Münstedt H (1976) Comparison of the elongational behaviour of a polyethylene melt at constant stress and constant strain rate. Rheol Acta 15:517–524CrossRefGoogle Scholar
  18. Laun HM, Münstedt H (1978) Elongational behaviour of a low density polyethylene melt. I. Strain rate and stress dependence of viscosity and recoverable strain in the steady-state. Comparison with shear data. Influence of interfacial tension. Rheol Acta 17:415–425CrossRefGoogle Scholar
  19. Leblans PJR, Sampers J, Booij HC (1985) Rheological properties of some polyolefine melts in transient uniaxial elongational flow, described with a special type of constitutive equation. J Non-Newtonian Fluid Mech 19:185–207CrossRefGoogle Scholar
  20. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, García-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35:3066–3075CrossRefGoogle Scholar
  21. Malkin AY, Isayev AI (2006) Rheology. Concepts, methods and applications. ChemTec Publisching, TorontoGoogle Scholar
  22. McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheol 42(1):81–110.CrossRefGoogle Scholar
  23. Meissner J (1972) Development of a universal extensional rheometer for the uniaxial extension of polymer melts. Trans Soc Rheol 16(3):405–420CrossRefGoogle Scholar
  24. Münstedt H (1975) Viscoelasticity of polystyrene melts in tensile creep experiments. Rheol Acta 14:1077–1088CrossRefGoogle Scholar
  25. Münstedt H, Laun HM (1981) Elongational properties and molecular structure of polyethylene melts. Rheol Acta 20(3):211–221CrossRefGoogle Scholar
  26. Nemoto N (1970) Viscoelastic properties of narrow-distribution polymers II. Tensile creep studies of polystyrene. Polym J 1(4):485–492CrossRefGoogle Scholar
  27. Patham B, Jayaraman K (2005) Creep recovery of random ethylene-octene polymer melts with varying comonomer content. J Rheol 49(5):989–999CrossRefGoogle Scholar
  28. Resch JA (2010) Elastic and viscous properties of polyolefin melts with different molecular structures investigated in shear and elongation. Dissertation, Universität Erlangen-NürnbergGoogle Scholar
  29. Resch JA, Stadler FJ, Kaschta J, Münstedt H (2009) Temperature dependence of the linear steady-state shear compliance of linear and long-chain branched polyethylenes. Macromolecules 42:5676–5683CrossRefGoogle Scholar
  30. Rolón-Garrido VH, Pivokonsky R, Filip P, Zatloukal M, Wagner MH (2009) Modelling elongational and shear rheology of two LDPE melts. Rheol Acta 48:691–697CrossRefGoogle Scholar
  31. Rolón-Garrido VH, Wagner MH (2009) The damping function in rheology. Rheol Acta 48:245–284CrossRefGoogle Scholar
  32. Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49(3):585–606CrossRefGoogle Scholar
  33. Simhambhatla M, Leonov AI (1995) On the rheological modelling of viscoelastic polymer liquids with stable constitutive equations. Rheol Acta 34:259–273CrossRefGoogle Scholar
  34. Stadlbauer M, Janeschitz-Kriegl H, Lipp M, Eder G, Forstner R (2004) Extensional rheometer for creep flow at high tensile stress. Part I. Description and validation. J Rheol 48(3):611–629CrossRefGoogle Scholar
  35. Termonia Y (1996) A creep compliance simulation study of the viscosity entangled polymer melts. Macromolecules 29:2025–2028CrossRefGoogle Scholar
  36. Vinogradov GV, Fikhman VD, Radushkevich BV (1972). Uniaxial extension of polystyrene at true constant stress. Rheol Acta 11:286–291CrossRefGoogle Scholar
  37. Wagner MH (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 15:136–142CrossRefGoogle Scholar
  38. Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newton Fluid Mech 4:39–55CrossRefGoogle Scholar
  39. Wagner MH (1979) Elongational behaviour of polymer melts in constant elongation-rate, constant tensile stress, and constant tensile force experiments. Rheol Acta 18(6):681–692CrossRefGoogle Scholar
  40. Wagner MH, Stephenson SE (1979) The irreversibility assumption of network disentanglement in flowing polymer melts and its effects on elastic recoil predictions. J Rheol 23(4):489–504CrossRefGoogle Scholar
  41. Wagner MH, Meissner J (1980) Network disentanglement and time-dependent flow behaviour of polymer melts. Makromol Chem 181:1533–1550CrossRefGoogle Scholar
  42. Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412CrossRefGoogle Scholar
  43. Watanabe H, Inoue T (2004) Creep behavior of combined Rouse-reptation mechanism. Nihon Reoroji Gakkaishi (J Soc Rheol Jpn) 32(3):113–116CrossRefGoogle Scholar
  44. Winter HH, Mours M (2007) Iris Developments.
  45. Wolff F, Resch JA, Kaschta J, Münstedt H (2010) Comparison of viscous and elastic properties of polyolefin melts in shear and elongation. Rheol Acta 49:95–103CrossRefGoogle Scholar
  46. Yasuda S, Yamamoto R (2010) Multiscale modelling and simulation for polymer melt flows between parallel plates. Phys Rev E 81:036308CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Víctor Hugo Rolón-Garrido
    • 1
    Email author
  • Julia Antonia Resch
    • 2
  • Friedrich Wolff
    • 2
  • Joachim Kaschta
    • 2
  • Helmut Münstedt
    • 2
  • Manfred H. Wagner
    • 1
  1. 1.Chair of Polymer Engineering/Polymer PhysicsBerlin Institute of Technology (TU Berlin)BerlinGermany
  2. 2.Institute of Polymer Materials, Department of Materials ScienceFriedrich-Alexander-University Erlangen-NürnbergErlangenGermany

Personalised recommendations