Skip to main content
Log in

Elongational and shear flow in polymer-clay nanocomposites measured by on-line extensional and off-line shear rheometry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Rheological behaviour of polymer nanocomposites has been usually characterized by rotational as well as capillary rheometry, which are both time and cost consuming. We have already published that reinforcement in polymer-clay nanocomposites can be estimated very fast using extensional rheometer in combination with a capillary rheometer. It has been proven that the magnitude of melt strength can be correlated with that of tensile strength, i.e. 3D physical network made of layered silicate and polymer matrix, which is responsible for material reinforcement, can be monitored directly using extensional rheometry. Therefore, additional time for samples preparation by press or injection moulding as well for long measurements by tensile testing is not required any more. In this contribution, results of extensional rheometry measured directly during compounding process are presented. In this manner, further reduction in time required for material characterization has been achieved. The samples have been prepared by advanced compounding using a melt pump and special screw geometries. With the use of on-line extensional rheometry and off-line rotational rheometry, different nanocomposites have been tested and the effect of processing conditions (screw speed and geometry in the twin-screw extruder) on elongational and viscoelastic properties has been investigated. It has been found that the level of melt strength measured by extensional rheometry correlates with a high accuracy with dynamic rheological data measured by rotational rheometry. It was hereby confirmed that the network structure made of silicate platelets in polymer melt is reflected in both elongational and shear flow in the same way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Dintcheva NTZ, Al-Malaika S, La Mantia FP (2009) Effect of extrusion and photo-oxidation on polyethylene/clay nanocomposites. Polym Degrad Stab 94(9):1571–1588

    Article  CAS  Google Scholar 

  • Gelfer M, Song HH, Liu L, Avila-Orta C, Yang L, Si M, Hsiao BS, Chu B, Rafailovich M, Tsou AH (2002) Manipulating the microstructure and rheology in polymer-organoclay composites. Polym Eng Sci 42:1841–1851

    Article  CAS  Google Scholar 

  • Gilman J, Kashiwagi T, Lichtenhan J (1997) Nanocomposites: a revolutionary new flame retardant approach. Sampe J 33:40–46

    CAS  Google Scholar 

  • Hoffmann B, Dietrich C, Thomann R, Friedrich C, Mülhaupt R (2000a) Morphology and rheology of polystyrene nanocomposites based upon organoclay. Macromol Rapid Commun 21:57–61

    Article  CAS  Google Scholar 

  • Hoffmann B, Kressler J, Stöppelmann G, Friedrich C, Kim GM (2000b) Rheology of nanocomposites based on layered silicates and polyamide-12. Colloid Polym Sci 278:629–636

    Article  CAS  Google Scholar 

  • Hyun YH, Lim ST, Choi HJ, Jhon MS (2001) Rheology of poly(ethylene oxide)/organoclay nanocomposites. Macromolecules 34:8084–8093

    Article  CAS  Google Scholar 

  • Incarnato L, Scarfato P, Scatteia L, Acierno D (2004) Rheological behavior of new melt compounded copolyamide nanocomposites. Polymer 45:3487–3496

    Article  CAS  Google Scholar 

  • Kim TH, Jang LW, Lee DC, Choi HJ, Jhon MW (2002) Synthesis and rheology of intercalated polystyrene/Na + -montmorillonite nanocomposites. Macromol Rapid Commun 23:191–195

    Article  CAS  Google Scholar 

  • Kracalik M, Mikesova J, Puffr R, Baldrian J, Thomann R, Friedrich C (2007a) Effect of 3D structures on recycled PET/organoclay nanocomposites. Polym Bull 58:313–319

    Article  CAS  Google Scholar 

  • Kracalik M, Studenovsky M, Mikesova J, Sikora A, Thomann R, Friedrich C, Fortelny I, Simonik J (2007b) Recycled PET nanocomposites improved by silanization of organoclays. J Appl Polym Sci 106(2):926–937

    Article  CAS  Google Scholar 

  • Kracalik M, Studenovsky M, Mikesova J, Kovarova J, Sikora A, Thomann R, Friedrich C (2007c) Recycled PET-organoclay nanocomposites with enhanced processing properties and thermal stability. J Appl Polym Sci 106(3):2092–2100

    Article  CAS  Google Scholar 

  • Kracalik M, Laske S, Gschweitl M, Feuchter M, Maier G, Pinter G, Friesenbichler W, Langecker GR (2007d) Invited lecture at international conference NanoEurope 2007, St. Gallen, Switzerland, September 11–13, 2007, Proceed, pp 13–14

  • Kracalik M, Laske S, Gschweitl M, Friesenbichler W, Langecker GR (2009) Advanced compounding: extrusion of polypropylene nanocomposites using the melt pump. J Appl Polym Sci 113(3): 1422–1428

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  CAS  Google Scholar 

  • Kotsilkova R (2002) Rheology–structure relationship of polymer/layered silicate hybrids. Mechanics Time-Dependent Mater 6:283–300

    Article  CAS  Google Scholar 

  • Laske S, Kracalik M, Gschweitl M, Feuchter M, Maier G, Pinter G, Thomann R, Friesenbichler W, Langecker GR (2009) Estimation of reinforcement in compatibilized polypropylene nanocomposites by extensional rheology. J Appl Polym Sci 111(5):2253–2259

    Article  CAS  Google Scholar 

  • Lee KM, Han CD (2003a) Rheology of organoclay nanocomposites: effects of polymer matrix/organoclay compatibility and the gallery distance of organoclay. Macromolecules 36:7165–7178

    Article  CAS  Google Scholar 

  • Lee KM, Han CD (2003b) Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44:4573–4588

    Article  CAS  Google Scholar 

  • Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK (2002) Well-defined, model long chain branched polyethylene: 2. Melt rheological behaviour. Macromolecules 35:3066–3075

    Article  CAS  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Progr Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  • Ray SS, Yamada K, Okamoto M, Ueda K (2003) New polylactide-layered silicate nanocomposites: 2. Concurrent improvements of material properties, biodegradability and melt rheology. Polymer 44:857–866

    Article  Google Scholar 

  • Sanchez-Solis A, Garcia-Rejon A, Manero O (2003) Production of nanocomposites of PET-montmorillonite clay by an extrusion process. Macromol Symp 192:281–292

    Article  CAS  Google Scholar 

  • Sanchez-Solis A, Romero-Ibarra I, Estrada MR, Calderas F, Manero O (2004) Mechanical and rheological studies on polyethylene terephthalate–montmorillonite nanocomposites. Polym Eng Sci 44:1094–1102

    Article  CAS  Google Scholar 

  • Schulze D, Trinkle S, Mulhaupt R, Friedrich C (2003) Rheological evidence of modifications of polypropylene by β-irradiation. Rheol Acta 42:251–258

    CAS  Google Scholar 

  • Solomon MJ, Almusallam AS, Seefeldt KF, Somwangthanaroj A, Varadan P (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872

    Article  CAS  Google Scholar 

  • Trinkle S, Friedrich C (2001) Van Gurp–Palmen plot: a way to characterize polydispersity of linear polymers. Rheol Acta 40:322–328

    Article  CAS  Google Scholar 

  • Trinkle S, Walter P, Friedrich C (2002) Van Gurp–Palmen plot II — classification of long chain branched polymers by their topology. Rheol Acta 41:103–113

    Article  CAS  Google Scholar 

  • Van Gurp M, Palmen J (1998) Time–temperature superposition for polymeric blends. Rheol Bull 67:5–8

    Google Scholar 

  • Wagener R, Reisinger TJG (2003) A rheological method to compare the degree of exfoliation of nanocomposites. Polymer 44:7513–7518

    Article  CAS  Google Scholar 

  • Zeichner GR, Patel PD (1981) A comprehensive evaluation of polypropylene melt rheology. In: Proc 2nd world congr chem engng, Montreal

  • Zeichner GR, Macosko CW (1982) On-line viscoelastic measurements for polymer melt processes, vol 28. SPE ANTEC Tech. Papers, p 79

Download references

Acknowledgements

This research has been supported by the NanoComp–0901 PlaComp1 Project, which is part of the NanoComp research project cluster founded by Austrian Nanoinitiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Kracalik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kracalik, M., Laske, S., Witschnigg, A. et al. Elongational and shear flow in polymer-clay nanocomposites measured by on-line extensional and off-line shear rheometry. Rheol Acta 50, 937–944 (2011). https://doi.org/10.1007/s00397-011-0545-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-011-0545-2

Keywords

Navigation