Skip to main content
Log in

How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This work aims to elucidate how molecular parameters dictate the occurrence of inhomogeneous cohesive failure during step strain and large amplitude oscillatory shear (LAOS) respectively in entangled polymer mixtures. Based on three well-entangled polybutadiene (PB) mixtures, we perform simultaneous rheometric and particle-tracking velocimetric (PTV) measurements to illustrate how the slip length controls the degree of shear banding. Specifically, the PB mixtures were prepared using the same parent polymer (M w ∼ 106 g/mol) at 10 wt.% concentration in respective polybutadiene solvents (PBS) of three different molecular weights 1.5, 10, and 46 kg/mol. After step strain, the entangled PB mixture with PBS-1.5 K displayed interfacial failure whereas the PB mixture with PBS-10 K showed bulk failure, demonstrating the effectiveness of our strategy to suppress wall slip by controlling PBS’ molecular weight. Remarkably, the PBS-46K actually allows the elastic yielding to occur homogeneously so that no appreciable macroscopic motions were observed upon shear cessation. PBS is found to play a similar role in LAOS of these three PB mixtures. Finally, we demonstrate that in case of the slip-prone mixture based on PBS-1.5 K the interfacial failure could be drastically reduced by use of shearing plates with considerable surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adrian DW, Giacomin AJ (1992) The quasi-periodic nature of a polyurethane melt in oscillatory shear. J Rheol 36:1227–1243

    Article  CAS  Google Scholar 

  • Archer LA, Chen YL, Larson RG (1995) Delayed slip after step strains in highly entangled polystyrene mixtures. J Rheol 39:519–525

    Article  CAS  Google Scholar 

  • Archer LA, Sanchez-Reyes J, Juliani (2002) Relaxation dynamics of polymer liquids in nonlinear step strain. Macromolecules 35:10216–10224

    Article  CAS  Google Scholar 

  • Boukany PE, Wang SQ (2007) A correlation between velocity profile and molecular weight distribution in sheared entangled polymer mixtures. J Rheol 51:217–233

    Article  CAS  Google Scholar 

  • Boukany PE, Wang SQ (2009a) Shear banding or not in entangled DNA mixtures depending on the level of entanglement. J Rheol 53:73–83

    Article  CAS  Google Scholar 

  • Boukany PE, Wang SQ, Wang XR (2009b) Step strain of entangled linear polymer melts: new experimental evidence for elastic yielding. Macromolecules 42:6261–6269

    Article  CAS  Google Scholar 

  • Cho KS, Hyun K, Ahn KH, Lee SJ (2005) A geometrical interpretation of large amplitude oscillatory shear response. J Rheol 49:747–758

    Article  CAS  Google Scholar 

  • Clemeur N, Rutgers RPG, Debbaut B (2003) On the evaluation of some differential formulations for the pom-pom constitutive model. Rheol Acta 42:217–231

    CAS  Google Scholar 

  • Debbaut B, Burhin H (2002) Large amplitude oscillatory shear and Fourier-transform rheology for a high density polyethylene: experiments and numerical simulation. J Rheol 46:1155–1176

    Article  CAS  Google Scholar 

  • Dusschoten DV, Wilhelm M, Spiess HW (2001) Two-dimensional Fourier transform rheology. J Rheol 45:1319–1339

    Article  Google Scholar 

  • Einaga Y, Osaki K, Kurata M, Kimura S, Tamura M (1971) Stress relaxation of polymer mixtures under large strain. J Polym 2:550–552

    CAS  Google Scholar 

  • Ewoldt RH, Hosoi AW, McKinley GH (2009) New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J Rheol 52:1427–1458

    Article  Google Scholar 

  • Fukuda M, Osaki K, Kurata M (1975) Nonlinear viscoelasticity of polystyrene mixtures. I. Strain-dependent relaxation modulus. J Polym Sci, Polym Phys Ed 13:1563–1576

    Article  CAS  Google Scholar 

  • Giacomin AJ, Oakley JG (1992) Structural network models for molten plastics evaluated in large-amplitude oscillatory shear. J Rheol 36:1529–1546

    Article  CAS  Google Scholar 

  • Giacomin AJ, Jeyaseelan RS, Samurkas T, Dealy JM (1993) Validity of separable BKZ model for large amplitude oscillatory shear. J Rheol 37:811–826

    Article  CAS  Google Scholar 

  • Graessley WW (2008) Polymeric liquids and networks: dynamics and rheology. Garland, London

    Google Scholar 

  • Hu YT, Wilen L, Philips A, Lips A (2007) Is the constitutive relation for entangled polymers monotonic? J Rheol 51:275–295

    Article  CAS  Google Scholar 

  • Islam MT, Sanchez-Reyes J, Archer LA (2001) Nonlinear rheology of highly entangled polymer liquids: step strain damping function. J Rheol 45:61–82

    Article  CAS  Google Scholar 

  • Islam MT, Sanchez-Reyes J, Archer LA (2003) Step and steady shear responses of nearly monodisperse highly entangled 1,4-polybutadiene mixtures. Rheol Acta 42:191–198

    CAS  Google Scholar 

  • Jeyaseelan RS, Giacomin AJ (2008) Network theory for polymer solutions in large amplitude oscillatory shear. J Non-Newton Fluid Mech 148:24–32

    Article  CAS  Google Scholar 

  • Kallus S, Willenbacher N, Kirsch S, Distler D, Neidhofer T, Wilhelm M, Spiess HW (2001) Characterization of polymer dispersions by Fourier transform rheology. Rheol Acta 40:552–559

    Article  CAS  Google Scholar 

  • Karis TE, Seymour CM, Kono RN, Jhon MS (2002) Harmonic analysis in rheological property measurement. Rheol Acta 41:471–474

    Article  CAS  Google Scholar 

  • Klein CO, Spiess HW, Calin A, Balan C, Wilhelm M (2007) Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40:4250–4259

    Article  CAS  Google Scholar 

  • Larson RG, Khan SA, Raju VR (1988) Relaxation of stress and birefringence in polymers of high molecular weight. J Rheol 32:145–161

    Article  CAS  Google Scholar 

  • Li X, Wang SQ, Wang XR (2009) Nonlinearity in large amplitude oscillatory shear (LAOS) of different viscoelastic materials. J Rheol 53:1255–1274

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements and applications. Wiley, New York.

    Google Scholar 

  • Neidhofer T, Wilhelm M, Debbuat B (2003) Fourier-transform rheology experiments and finite-element simulations on linear polystyrene mixtures. J Rheol 47:1351–1371

    Article  CAS  Google Scholar 

  • Neidhofer T, Sioula S, Hadjichristidis N, Wilhelm M (2004) Distinguishing linear from star-branched polystyrene mixtures with Fourier-transform rheology. Macromol Rapid Commun 25:1921–1926

    Article  Google Scholar 

  • Osaki K, Kurata M (1980) Experimental appraisal of the Doi–Edwards theory for polymer rheology based on the data for polystyrene mixtures. Macromolecules 13:671–676

    Article  CAS  Google Scholar 

  • Ravindranath S, Wang SQ (2007) What are the origins of stress relaxation behaviors in step strain of entangled polymer mixtures? Macromolecules 40:8031–8039

    Article  CAS  Google Scholar 

  • Ravindranath S, Wang SQ (2008a) Steady state measurements in stress plateau region of entangled polymer mixtures: controlled-rate and controlled-stress modes. J Rheol 52:957–980

    Article  CAS  Google Scholar 

  • Ravindranath S, Wang SQ (2008b) Large amplitude oscillatory shear behavior of entangled polymer mixtures: particle tracking velocimetric investigation. J Rheol 52:341–358

    Article  CAS  Google Scholar 

  • Ravindranath S, Wang SQ, Olechnowicz M, Quirk RP (2008) Banding in simple steady shear of entangled polymer mixtures. Macromolecules 41:2663–2670

    Article  CAS  Google Scholar 

  • Reimers MJ, Dealy JM (1996) Sliding plate rheometer studies of concentrated polystyrene mixtures: large amplitude oscillatory shear of a very high molecular weight polymer in diethyl Phthalate. J Rheol 40:167–186

    Article  CAS  Google Scholar 

  • Rouyer F, Cohen-Addad S, Höhler R, Sollich P, Fielding SM (2008) The large amplitude oscillatory strain response of aqueous foam: strain localization and full stress Fourier spectrum. Eur Phys J E 27:309–321

    Article  CAS  Google Scholar 

  • Sanchez-Reyes J, Archer LA (2002) Step strain dynamics of entangled polymer liquids. Macromolecules 35:5194–5202

    Article  CAS  Google Scholar 

  • Sanchez-Reyes J, Archer LA (2003) Interfacial slip violations in polymer mixtures: role of microscale surface roughness. Langmuir 19:3304–3312

    Article  CAS  Google Scholar 

  • Schlatter G, Fleury G, Muller R (2005) Fourier transform rheology of branched polyethylene: experiments and models for assessing the macromolecular architecture. Macromolecules 38:6492–6503

    Article  CAS  Google Scholar 

  • Sim HG, Ahn KH, Lee SJ (2003) Large amplitude oscillatory shear behavior of complex fluids investigated by a network model: a guideline for classification. J Non-Newton Fluid Mech 112:237–250

    Article  CAS  Google Scholar 

  • Tapadia P, Wang SQ (2006) Direct visualization of continuous simple shear in non-Newtonian polymeric fluids. Phys Rev Lett 96:016001

    Article  Google Scholar 

  • Tapadia P, Ravindranath S, Wang SQ (2006) Banding in entangled polymer fluids under oscillatory shearing. Phys Rev Lett 96:196001

    Article  Google Scholar 

  • Venerus DC, Nair R (2006) Stress relaxation dynamics of an entangled polystyrene mixture following step strain flow. J Rheol 50:59–75

    Article  CAS  Google Scholar 

  • Vrentas CM, Graessley WW (1982) Study of shear stress relaxation in well characterized polymer liquids. J Rheol 26:359–371

    Article  CAS  Google Scholar 

  • Wang SQ, Ravindranath S, Boukany P, Olechnowicz M, Quirk R, Halasa A, Mays J (2006) Non-quiescent relaxation of entangled polymeric liquids after step strain. Phys Rev Lett 97:187801

    Article  Google Scholar 

  • Wang Y, Wang SQ, Boukany PE, Wang X (2007a) Elastic breakup in uniaxial extension of entangled polymer melts. Phys Rev Lett 99:237801

    Article  Google Scholar 

  • Wang SQ, Ravindranath S, Wang Y, Boukany PE (2007b) New theoretical considerations in polymer rheology: elastic breakdown of chain entanglement network. J Chem Phys 127:064903

    Article  Google Scholar 

  • Wapperom P, Leygue A, Keunings R (2005) Numerical simulation of large amplitude oscillatory shear of a high-density polyethylene melt using the MSF model. J Non-Newton Fluid Mech 130:63–76

    Article  CAS  Google Scholar 

  • Wen YH, Hua CC (2009) Chain stretch and relaxation in transient entangled mixtures probed by double-step strain flow. J Rheol 53:781–798

    Article  CAS  Google Scholar 

  • Wilhelm M (2002) Fourier-transform rheology. Macromol Mater Eng 287:83–105

    Article  CAS  Google Scholar 

  • Wilhelm M, Reinheimer P, Ortseifer M (1999) High sensitivity Fourier-transform rheology. Rheol Acta 38:349–356

    Article  CAS  Google Scholar 

  • Wilhelm M, Reinheimer P, Ortseifer M, Neidhofer T, Spiess HW (2000) The crossover between linear and non-linear mechanical behavior in polymer mixtures as detected by Fourier-rheology. Rheol Acta 39:241–246

    Article  CAS  Google Scholar 

  • Yosick JA, Giacomin AJ, Moldenaers P (1997) A kinetic network model for nonlinear flow behavior of molten plastics in both shear and extension. J Non-Newton Fluid Mech 70:103–123

    Article  CAS  Google Scholar 

  • Yu W, Wang P, Zhou CX (2009) General stress decomposition in nonlinear oscillatory shear flow. J Rheol 53:215–238

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is supported, in part, by a grant (DMR-0821697) from the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravindranath, S., Wang, SQ., Olechnowicz, M. et al. How polymeric solvents control shear inhomogeneity in large deformations of entangled polymer mixtures. Rheol Acta 50, 97–105 (2011). https://doi.org/10.1007/s00397-010-0507-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0507-0

Keywords

Navigation