Skip to main content
Log in

Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological behavior of polymethylmethacrylate (PMMA) particles suspensions in glycerine–water mixtures has been investigated by means of steady and dynamic rheometry in this work. The shear rheology of these suspensions demonstrates a strong shear thickening behavior. The variations of shear viscosity with the volume fraction and ratios of glycerine to water are discussed. The effect of volume fraction can be qualitatively explained using a clustering mechanism, which attributes the phenomena to the formation of temporary, hydrodynamic clusters. The influence of interactions between glycerine–water mixtures and PMMA particles on shear thickening is investigated by varying the ratio of glycerine to water. In addition, the reversible and thixotropic properties of suspensions of PMMA dispersed in glycerine–water (3:1) mixtures are also investigated, and the results demonstrate the excellent reversible and thixotropic properties of PMMA particle suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrew D, Jones R, Leary B, Boger DV (1991) The rheology of a concentrated colloidal suspension of hard spheres. J Colloid Interface Sci 147(2):479–495

    Article  Google Scholar 

  • Barnes HA, Bebington W (1989) Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J Rheol 33(2):329–366

    Article  CAS  Google Scholar 

  • Bender JW, Wagner NJ (1995) Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions. J Colloid Interface Sci 172(1):171–184

    Article  CAS  Google Scholar 

  • Bender J, Wagner NJ (1996) Reversible shear thickening in monodisperse and bidisperse colloidal dispersions. J Rheol 40(5):899–915

    Article  CAS  ADS  Google Scholar 

  • Bischoff White EE, Chellamuthu M, Rothstein JP (2010) Extensional rheology of a shear-thickening cornstarch and water suspension. Rheol Acta 49:119–129

    Article  CAS  Google Scholar 

  • Boersma WH, Laven J, Stein HN (1990) Shear thickening (dilatancy) in concentrated dispersions. AICHE J 36(3):321–332

    Article  CAS  Google Scholar 

  • Bossis G, Brady JF (1989) The rheology of Brownian suspensions. J Chem Phys 91(3):1866–1874

    Article  CAS  ADS  Google Scholar 

  • Brown E, Forman NA, Orellana CS, Zhang HJ, Maynor BW, Betts DE, Desimone JM, Jaeger HM (2010) Generality of shear thickening in dense suspensions. Nat Mater 9:220–224

    CAS  ADS  PubMed  Google Scholar 

  • Catherall AA, Melrose JR (2000) Shear thickening and order–disorder effects in concentrated colloids at high shear rates. J Rheol 44(1):1–25

    Article  CAS  ADS  Google Scholar 

  • D’Haene P, Mewis J, Fuller GG (1993) Scattering dichroism measurements of flow-induced structure of a shear thickening suspension. J Colloid Interface Sci 156:350–358

    Article  Google Scholar 

  • Foss DR, Brady JF (2000) Structure, diffusion and rheology of Brownian suspensions by stokesian dynamics simulation. J Fluid Mech 407:167–200

    Article  MATH  CAS  ADS  Google Scholar 

  • Frith WJ, Haene PD, Buscall R, Mewis J (1996) Shear thickening in model suspensions of sterically stabilized particles. J Rheol 40(4):531–548

    Article  CAS  ADS  Google Scholar 

  • Galindo-rosales FJ, Rubio-hernández FJ, Velázquez-Navarro JF (2009) Shear-thickening behavior of Aerosil®R816 nanoparticles suspensions in polar organic liquids. Rheol Acta 48:699–708

    Article  CAS  Google Scholar 

  • Hatzikiriakos SG, Vlassopoulos D (1996) Brownian dynamics simulations of shear-thickening in dilute polymer solutions. Rheol Acta 35:274–287

    Article  CAS  Google Scholar 

  • Hoffman RL (1972) Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability. J Rheol 16(1):155–173

    Article  CAS  ADS  Google Scholar 

  • Hoffman RL (1998) Explanations for the cause of shear thickening in concentrated colloidal suspensions. J Rheol 42(1):111–123

    Article  CAS  ADS  Google Scholar 

  • Laun HM, Bung R, Hess S, Loose W, Hahn K, Hadicke E, Hingmann R, Schmidt F, Lindner P (1992) Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions. J Rheol 36(4):743–787

    Article  CAS  ADS  Google Scholar 

  • Lee YS, Wagner NJ (2003) Dynamic properties of shear thickening colloidal suspensions. Rheol Acta 42:199–208

    CAS  Google Scholar 

  • Lee YS, Wetzel ED, Wagner NJ (2003) The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. J Mater Sci 38:2825–2833

    Article  CAS  Google Scholar 

  • Li WH, Du HJ, Chen G, Yeo SH, Guo NQ (2003) Nonlinear viscoelastic properties of MR fluids under larger-amplitude-oscillatory-shear. Rheol Acta 42:280–286

    CAS  Google Scholar 

  • Li WH, Du HJ, Guo NQ (2004) Dynamic behavior of MR suspensions at moderate flux densities. Mater Sci Eng 371:9–15

    Article  CAS  Google Scholar 

  • Maranzano BJ, Wagner NJ (2001) The effects of interparticle interactions and particle size on reversible shear thickening: hard-sphere colloidal dispersions. J Rheol 45(5):1205–1222

    Article  CAS  ADS  Google Scholar 

  • Maranzano BJ, Wagner NJ (2002) Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. J Chem Phys 117(22):10291–10302

    Article  CAS  ADS  Google Scholar 

  • Shenoy SS, Wagner NJ (2005) Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersions. Rheol Acta 44:360–371

    Article  CAS  Google Scholar 

  • Wolf B, Frith WJ, Singleton S, Tassieri M, Norton IT (2001) Shear behaviour of biopolymer suspensions with spheroidal and cylindrical particles. Rheol Acta 40:238–247

    Article  CAS  Google Scholar 

  • Wu QM, Ruan JM, Huang BY (2006) Rheological behavior of fumed silica suspension in polyethylene glycol. J Cent South Univ Technol 13(1):1–5

    Article  Google Scholar 

  • Zaman AA, Bjelopavlic M, Moudgil BM (2000) Effect of adsorbed polyethylene oxide on the rheology of colloidal silica suspensions. J Colloid Interface Sci 226:290–298

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from National Basic Research Program of China (973 program, grant no. 2007CB936800) and SRFDP of China (project no. 20093402110010) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanquan Jiang or Xinglong Gong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, W., Sun, Y., Xu, Y. et al. Shear-thickening behavior of polymethylmethacrylate particles suspensions in glycerine–water mixtures. Rheol Acta 49, 1157–1163 (2010). https://doi.org/10.1007/s00397-010-0486-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0486-1

Keywords

Navigation