Skip to main content
Log in

Computations with viscoplastic and viscoelastoplastic fluids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This numerical study focuses on regularised Bingham-type and viscoelastoplastic fluids, performing simulations for 4:1:4 contraction–expansion flow with a hybrid finite element–finite volume subcell scheme. The work explores the viscoplastic regime, via the Bingham–Papanastasiou model, and extends this into the viscoelastoplastic regime through the Papanastasiou–Oldroyd model. Our findings reveal the significant impact that elevation has in yield stress parameters, and in sharpening of the stress singularity from that of the Oldroyd/Newtonian models to the ideal Bingham form. Such aspects are covered in field response via vortex behaviour, pressure-drops, stress field structures and yielded–unyielded zones. With rising yield stress parameters, vortex trends reflect suppression in both upstream and downstream vortices. Viscoelastoplasticity, with its additional elasticity properties, tends to disturb upstream–downstream vortex symmetry balance, with knock-on effects according to solvent-fraction and level of elasticity. Yield fronts are traced with increasing yield stress influences, revealing locations where relatively unyielded material aggregates. Analysis of pressure drop data reveals significant increases in the viscoplastic Bingham–Papanastasiou case, O (12%) above the equivalent Newtonian fluid, that are reduced to 8% total contribution increase in the viscoelastoplastic Papanastasiou–Oldroyd case. This may be argued to be a consequence of strengthening in first normal stress effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. To date, the concept of the yield stress and its definition remains a subject of controversy. Hence, in the literature, doubts are often expressed whether the yield stress exists in reality (as discussed in a plenary lecture by K. Walters at the YPF 2009 conference).

References

  • Abdali SS, Mitsoulis E, Markatos NC (1992) Entry and exit flows of Bingham fluids. J Rheol 36:389–407

    Article  CAS  Google Scholar 

  • Aboubacar M, Webster MF (2001) A cell-vertex finite volume/element method on triangles for abrupt contraction viscoelastic flows. J Non-Newton Fluid Mech 98:83–106

    Article  CAS  Google Scholar 

  • Aguayo JP, Tamaddon-Jahromi HR, Webster MF (2006) Extensional response of the pom-pom model through planar contraction flows for branched polymer melts. J Non-Newton Fluid Mech 134:105–126

    Article  CAS  Google Scholar 

  • Aguayo JP, Tamaddon-Jahromi HR, Webster MF (2008) Excess pressure-drop estimation in contraction and expansion flows for constant shear-viscosity, extension strain-hardening fluids. J Non-Newton Fluid Mech 153:157–176

    Article  CAS  Google Scholar 

  • Azouz I, Shirazi SA, Pilehvari A, Azar JJ (1993) Numerical simulation of laminar flows of yield-power-law fluids in conduits of arbitrary cross-section. J Fluids Eng 115:710–716

    Article  Google Scholar 

  • Balmforth NJ, Craster RV (2001) Geophysical aspects of non-newtonian fluid mechanics. In: Lecture notes in physics, vol 582/2001, Springer, Berlin/Heidelberg, pp 34–51

    Google Scholar 

  • Baloch A, Webster MF (1995) A computer simulation of complex flows of fibre suspensions. Comput Fluids 24:135–151

    Article  CAS  Google Scholar 

  • Barnes HA (1999) The yield stress—a review or ‘πανταρι’–everything flows? J Non-Newton Fluid Mech 81:133–178

    Article  CAS  Google Scholar 

  • Barnes HA, Walters K (1985) The yield stress myth? Rheol Acta 24:323–326

    Article  CAS  Google Scholar 

  • Bingham EC (1922) Fluidity and plasticity. McGraw Hill, New York

    Google Scholar 

  • Bonn D (2009) Yield stress fluids: to flow or not to flow, that is the question. Viscoplastic fluids: from theory to application, Cyprus

  • Burgos GR, Alexandrou AN, Entov V (1999) On the determination of yield surfaces in Herschel–Bulkley fluids. J Rheol 43:463–483

    Article  CAS  Google Scholar 

  • Carter RE, Warren RC (1987) Extrusion stresses, die swell, and viscous heating effects in double-base propellants. J Rheol 31:151–173

    Article  CAS  Google Scholar 

  • de Souza Mendes PR, Naccache MF, Varges PR, Marchesini FH (2007) Flow of viscoplastic liquids through axisymmetric expansions-contractions. J Non-Newton Fluid Mech 142:207–217

    Article  Google Scholar 

  • Dimakopoulos Y, Tsamopoulos J (2003) Transient displacement of viscoplastic fluids by air in straight or suddenly constricted tubes. J Non-Newton Fluid Mech 112:43–75

    Article  CAS  Google Scholar 

  • Dimakopoulos Y, Tsamopoulos J (2007) Transient displacement of Newtonian and viscoplastic liquids by air from complex conduits. J Non-Newton Fluid Mech 142:162–182

    Article  CAS  Google Scholar 

  • Donea J (1984) A Taylor-Galerkin method for convective transport problems. Int J Numer Methods Eng 20:101–119

    Article  Google Scholar 

  • Ellwood KRJ, Georgiou GC, Papanastasiou TC, Wilkes JO (1990) Laminar jets of Bingham-plastic liquids. J Rheol 34:787–812

    Article  Google Scholar 

  • Frigaard IA, Nouar C (2005) On the usage of viscosity regularization methods for viscoplastic fluid flow computation. J Non-Newton Fluid Mech 127:1–26

    Article  CAS  Google Scholar 

  • Hartnett JP, Hu RYZ (1989) Technical note: the yield stress—an engineering reality. J Rheol 33:671–679

    Article  CAS  Google Scholar 

  • Hawken DM, Tamaddon-Jahromi HR, Townsend P, Webster MF (1990) A Taylor-Galerkin based algorithm for viscous incompressible flow. Int J Numer Methods Fluids 10:327–351

    Article  Google Scholar 

  • Matallah H, Townsend P, Webster MF (1998) Recovery and stress-splitting schemes for viscoelastic flows. J Non-Newton Fluid Mech 75:139–166

    Article  CAS  Google Scholar 

  • Mitsoulis E (2007) Annular extrude swell of pseudoplastic and viscoelastic fluids. J Non-Newton Fluid Mech 141:138–147

    Article  CAS  Google Scholar 

  • Mitsoulis E, Huilgol RR (2004) Entry flows of Bingham plastics in expansions. J Non-Newton Fluid Mech 122:45–54

    Article  CAS  Google Scholar 

  • Mitsoulis E, Abdali SS, Markatos NC (1993) Flow simulation of Herschel-Bulkley fluids through extrusion dies 71:147–160

  • Møllera PCF, Mewisb J, Bonn D (2006) Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter 2:274–283

    Article  Google Scholar 

  • Papanastasiou TC (1987) Flows of materials with yield. J Rheol 31:385–404

    Article  CAS  Google Scholar 

  • Rothstein JP, McKinley GH (1999) Extensional flow of a polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion. J Non-Newton Fluid Mech 86:61–88

    Article  CAS  Google Scholar 

  • Rothstein JP, McKinley GH (2001) The axisymmetric contraction-expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J Non-Newton Fluid Mech 98:33–63

    Article  CAS  Google Scholar 

  • Saramito P (2007) A new constitutive equation for elastoviscoplastic fluid flows. J Non-Newton Fluid Mech 145:1–14

    Article  CAS  Google Scholar 

  • Szabo P, Rallison JM, Hinch EJ (1997) Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube. J Non-Newton Fluid Mech 72:73–86

    Article  CAS  Google Scholar 

  • Tamaddon-Jahromi HR, Webster MF, Walters K (2010) Predicting numerically the large increases in extra pressure drop when Boger fluids flow through axisymmetric contractions. J Nat Sci 2:1–11

    Google Scholar 

  • Walters K (2009) The yield stress concept—then and now. Plenary lecture given at the YPF 2009 Conference

  • Walters K, Webster MF, Tamaddon-Jahromi HR (2009a) The numerical simulation of some contraction flows of highly elastic liquids and their impact on the relevance of the Couette correction in extensional rheology. Chem Eng Sci 64:4632–4639

    Article  CAS  Google Scholar 

  • Walters K, Webster MF, Tamaddon-Jahromi HR (2009b) The White-Metzner model—then and now. The 25th annual meeting of the polymer processing society, Goa

  • Walters K, Tamaddon-Jahromi HR, Webster MF, Tomé MF, McKee S (2009c) The competing roles of extensional viscosity and normal stress differences in complex flows of elastic liquids. In: 20th anniversary symp., Korean society of rheology, Korea, pp 3–32

  • Wapperom P, Webster MF (1998) A second-order hybrid finite-element/volume method for viscoelastic flows. J Non-Newton Fluid Mech 79:405–431

    Article  CAS  Google Scholar 

  • Wapperom P, Webster MF (1999) Simulation for viscoelastic flow by a finite volume/element method. Comput Methods Appl Mech Eng 180:281–304

    Article  Google Scholar 

  • Webster MF, Tamaddon-Jahromi HR, Aboubacar M (2004) Transient viscoelastic flows in planar contractions. J Non-Newton Fluid Mech 118:83–101

    Article  CAS  Google Scholar 

  • Webster MF, Tamaddon-Jahromi HR, Aboubacar M (2005) Time-dependent algorithm for viscoelastic flow-finite element/volume schemes. Numer Methods Partial Differ Equ 21:272–296

    Article  Google Scholar 

  • Zienkiewicz OC, Morgan K, Peraire J, Vandati M, LÄohner R (1985) Finite elements for compressible gas flow and similar systems. In: 7th int. conf. comput. meth. appl. sci. eng., Versailles, France

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Francis Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belblidia, F., Tamaddon-Jahromi, H.R., Webster, M.F. et al. Computations with viscoplastic and viscoelastoplastic fluids. Rheol Acta 50, 343–360 (2011). https://doi.org/10.1007/s00397-010-0481-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0481-6

Keywords

Navigation