Skip to main content
Log in

Large amplitude oscillatory extension of soft polymeric networks

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Using a filament stretching rheometer surrounded by a thermostatic chamber and equipped with a micrometric laser, it is possible to measure large amplitude oscillatory elongation (LAOE) on elastomeric based networks with no base flow as in the LAOE method for polymer melts. Poly(dimethylsiloxane)-based networks, considered as a model system for studying the development of soft elasticity, are mechanically characterised through reversed LAOE deformation, applying oscillatory measurements with several amplitudes and frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anna SL, Rogers CB, McKinley GH (1999) On controlling the kinematics of a filament stretching rheometer using a real-time active control mechanism. J Non-Newton Fluid Mech 87:307–335

    Article  MATH  CAS  Google Scholar 

  • Bach A, Rasmussen HK, Hassager O (2003a) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441

    Article  CAS  ADS  Google Scholar 

  • Bach A, Almdal K, Rasmussen HK, Hassager O (2003b) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179

    Article  CAS  ADS  Google Scholar 

  • Fetters LJ, Lohse J, Richter D, Witten TA, Zirkelt A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    Article  CAS  ADS  Google Scholar 

  • Hadinata C, Boos D, Gabriel C, Wassner E, Rullmann M, Kao N, Laun M (2007) Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization. J Rheol 51:195–215

    Article  CAS  ADS  Google Scholar 

  • Hild G (1998) Model networks based on ‘endlinking’ processes: synthesis, structure and properties. Prog Polym Sci 23:1019–1149

    Article  CAS  Google Scholar 

  • Kawamura T, Urayama K, Kohjiya S (2002) Multiaxial deformations of end-linked poly (dimethylsiloxane) networks. 3. Effect of entanglement density on strain-energy density function. J Polym Sci Part B: Polym Phys 40:2780–2790

    Article  CAS  ADS  Google Scholar 

  • Kolte MI, Rasmussen HK, Hassager O (1997) Transient filament stretching rheometer. 2. Numerical simulation. Rheol Acta 36:285–302

    CAS  Google Scholar 

  • Larsen AL, Sommer-Larsen P, Hassager O (2005) Some experimental results for the end-linked PDMS network system. E-Polymers 0502-4:1–18

    Google Scholar 

  • Larsen AL, Hansen K, Sommer-Larsen P, Hassager O, Bach A, Ndoni S, Jorgensen M (2003) Elastic properties of nonstoichiometric reacted PDMS networks. Macromolecules 36:10063–10070

    Article  CAS  ADS  Google Scholar 

  • Matta JE, Tytus RP (1990) Liquid stretching using a falling cylinder. J Non-Newton Fluid Mech 35:215–29

    Article  CAS  Google Scholar 

  • McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415

    Article  MathSciNet  ADS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Philippoff W (1966) Vibrational measurements with large amplitudes. Trans Soc Rheol 10:317–334

    Article  CAS  Google Scholar 

  • Rasmussen HK, Laille P, Yu KJ (2008) Large amplitude oscillatory elongation flow. Rheol Acta 47:97–103

    Article  CAS  Google Scholar 

  • Sentmanat ML (2004) Miniature universal testing platform: from extensional melt rheology to solid-state deformation behavior. Rheol Acta 43:657–669

    Article  CAS  Google Scholar 

  • Sentmanat M, Wang BN, McKinley GH (2005) Measuring the transient extensional rheology of polyethylene melts using the SER universal testing platform. J Rheol 49:585–606

    Article  CAS  ADS  Google Scholar 

  • Simmons A, Padsalgikar AD, Ferris LM, Poole-Warren LA (2008) Biostability and biological performance of a PDMS-based polyurethane for controlled drug release. Biomaterials 29:2987–2995

    Article  CAS  PubMed  Google Scholar 

  • Solomon MJ, Muller SJ (1996) The transient extensional behaviour of polystyrene-based Boger fluids of varying solvent quality and molecular weight. J Rheol 40:837–856

    Article  CAS  ADS  Google Scholar 

  • Spiegelberg SH, McKinley GH (1996) Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow. J Non-Newton Fluid Mech 67:49–76

    Article  CAS  Google Scholar 

  • Sridhar T, Tirtaadmadja V, Nguyen D, Gupta R (1991) Measurement of the extensional viscosity of polymer-solutions. J Non-Newton Fluid Mech 40:271–280

    Article  CAS  Google Scholar 

  • Stepto RFT (1993) Siloxane polymers. In: Clarson SJ, Semlyen JA (eds). Prentice Hall, Upper Saddle River, pp 373–414

  • Treloar LRG (2005) The physics of rubber elasticity, 3rd edn. Clarendon, Oxford

    Google Scholar 

  • Urayama K, Kawamura T, Kohjiya S (2001a) Multiaxial deformations of end-linked poly(dimethylsiloxane) networks. 1. Phenomenological approach to strain energy density function. Macromolecules 34:8252–8260

    Article  ADS  Google Scholar 

  • Urayama K, Kawamura T, Kohjiya S (2001b) Multiaxial deformations of end-linked poly(dimethylsiloxane) networks. 2. Experimental tests of molecular entanglement models of rubber elasticity. Macromolecules 34:8261–8269

    Article  CAS  ADS  Google Scholar 

  • Urayama K, Kawamura T, Kohjiya S (2003) Multiaxial deformations of end-linked poly(dimethylsiloxane) networks. 4. Further assessment of the slip-link model for chain-entanglement effect on rubber elasticity. J Chem Phys 118:5658–5664

    Article  CAS  ADS  Google Scholar 

  • Urayama K, Kawamura T, Kohjiya S (2009) Structure-mechanical property correlations of model siloxane elastomers with controlled network topology. Polymer 50:347–356

    Article  CAS  Google Scholar 

  • Verhoef MRJ, Van den Brule BHAA, Hulsen MA (1998) On the modelling of a PIB/PB Boger fluid in extensional flow. J Non-Newton Fluid Mech 80:155–182

    Article  Google Scholar 

  • Wu Mh (2009) Simple poly(dimethylsiloxane) surface modification to control cell adhesion. Surf Interface Anal 41:11–16

    Article  CAS  Google Scholar 

  • Szabo P (1997) Transient filament stretching rheometer. 1. Force balance analysis. Rheol Acta 36:277–284

    CAS  Google Scholar 

  • Szabo P, McKinley GH (2003) Filament stretching rheometer: inertia compensation revisited. Rheol Acta 42:269–272

    CAS  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the Danish Technical Research Council and from EU project SoftComp to the Danish Polymer Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Ladegaard Skov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bejenariu, A.G., Rasmussen, H.K., Skov, A.L. et al. Large amplitude oscillatory extension of soft polymeric networks. Rheol Acta 49, 807–814 (2010). https://doi.org/10.1007/s00397-010-0464-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-010-0464-7

Keywords

Navigation