Skip to main content
Log in

Relaxation effects of slip in shear flow of linear molten polymers

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The transient shear response of a linear molten polymer (linear low-density polyethylene) in the nonlinear domain was studied using a true shear (sliding plate) rheometer with different gap spacings to detect slip effects. It was found that nonlinear viscoelasticity is further complicated by wall slip phenomena. Experimental evidence suggested that static slip models coupled with Wagner’s constitutive equation cannot adequately describe the experimental data at large and fast shear deformations. A new dynamic slip model involving multiple slip relaxation times is proposed in this paper, together with a method to assess the model parameters. Significant improvement in predicting the stress response is demonstrated by several examples of start-up of steady shear and large-amplitude oscillatory tests of a linear low-density polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Archer LA (2005) Wall slip: measurement and modeling issues. In: Hatzikiriakos SG, Migler KB (eds) Polymer processing instabilities. Marcel Dekker, New York

    Google Scholar 

  • Baumgaertel M, Winter HH (1989) Determination of discrete relaxation and retardation time spectra from dynamic mechanical data. Rheol Acta 28:511–519

    Article  CAS  Google Scholar 

  • Boukany PE, Wang S-Q (2008) Observations of wall slip and shear banding in an entangled DNA solution. Macromolecules 41:2644–2650

    Article  CAS  ADS  Google Scholar 

  • Boukany PE, Wang S-Q (2009) Exploring origins of interfacial yielding and wall slip in entangled linear melts during shear or after shear cessation. Macromolecules 42:2222–2228

    Article  CAS  ADS  Google Scholar 

  • Boukany PE, Tapadia P, Wang S-Q (2006) Interfacial stick-slip transition in simple shear of entangled melts. J Rheol 50:641–654

    Article  CAS  ADS  Google Scholar 

  • Brochard F, de Gennes P-G (1992) Shear-dependent slippage at a polymer/solid interface. Langmuir 8:3033–3037

    Article  CAS  Google Scholar 

  • de Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • Hatzikiriakos SG (1993) A slip model for linear polymers based on adhesive failure. Int Polym Process VIII:135–142

    Google Scholar 

  • Hatzikiriakos SG (1995) A multimode interfacial constitutive equation for molten polymers. J Rheol 39:61–71

    Article  CAS  ADS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1991) Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J Rheol 35:497–523

    Article  CAS  ADS  Google Scholar 

  • Hatzikiriakos SG, Dealy JM (1992) Wall slip of molten high density polyethylene. II. Capillary rheometer studies. J Rheol 36:703–741

    Article  CAS  ADS  Google Scholar 

  • Hatzikiriakos SG, Kalogerakis N (1994) A dynamic slip velocity model for molten polymers based on a network kinetic theory. Rheol Acta 33:38–47

    Article  CAS  Google Scholar 

  • Hill DA, Hasegawa T, Denn MM (1990) On the apparent relation between adhesive failure and melt fracture. J Rheol 34:891–918

    Article  ADS  Google Scholar 

  • Kalika DS, Denn MM (1987) Wall slip and extrudate distortion in linear low-density polyethylene. J Rheol 31:815–834

    Article  CAS  ADS  Google Scholar 

  • Lau HC, Schowalter WR (1986) A model for adhesive failure of viscoelastic fluids during flow. J Rheol 30:193–206

    Article  MATH  CAS  ADS  Google Scholar 

  • Mooney M (1931) Explicit formulas for slip and fluidity. J Rheol 2:210

    Article  CAS  ADS  Google Scholar 

  • Pearson JRA, Petrie CJS (1968) On melt flow instability of extruded polymers. In: Wetton RE, Whorlow RH (eds) Polymer systems: deformation and flow. Macmillan, London, pp 163–187

    Google Scholar 

  • Ramamurthy AV (1986) Wall slip in viscous fluids and influence of materials of construction. J Rheol 30:337–357

    Article  CAS  ADS  Google Scholar 

  • Soskey PR, Winter HH (1984) Large step strain experiments with parallel-disk rotational rheometers. J Rheol 28:625–645

    Article  CAS  ADS  Google Scholar 

  • Stewart CW (1993) Wall slip in the extrusion of linear polyolefins. J Rheol 37:499–513

    Article  CAS  ADS  Google Scholar 

  • Wagner MH (1976) Analysis of time-dependent non-linear stress-growth data for shear and elongational flow of a low-density branched polyethylene melt. Rheol Acta 15:136–142

    Article  CAS  Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2008) Verification of branch point withdrawal in elongational flow of pom-pom polystyrene melt. J Rheol 52:1049–1068

    Article  CAS  ADS  Google Scholar 

  • Wagner MH, Rolón-Garrido VH, Chai ChK (2005) Exponential shear flow of branched polyethylenes in rotational parallel plate geometry. Rheol Acta 45:164–173

    Article  CAS  Google Scholar 

  • Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non-Newton Fluid Mech 68:225–239

    Article  CAS  Google Scholar 

  • Winter HH, Baumgaertel M, Soskey PR (1993) A parsimonious model for viscoelastic liquids and solids. In: Collyer AA (ed) Techniques in rheological measurement. Chapman & Hall, London

    Google Scholar 

  • Zapas LJ (1966) Viscoelastic behavior under large deformations. J Res Natl Bur Stand 70A:525–532

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas G. Hatzikiriakos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kazatchkov, I.B., Hatzikiriakos, S.G. Relaxation effects of slip in shear flow of linear molten polymers. Rheol Acta 49, 267–274 (2010). https://doi.org/10.1007/s00397-009-0416-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0416-2

Keywords

Navigation