Skip to main content
Log in

Lubricated squeezing flow of thin slabs of wheat flour dough: comparison of results at constant plate speed and constant extension rates

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Lubricated squeezing flow experiments on wheat flour dough have, until now, mostly been performed in constant plate speed mode (CPS), i.e. at a permanently increasing extension rate. We have compared the results obtained under the CPS and constant extension rate (CER) modes using one of the very few commercial rheometers that allow operation in the CER mode. In both cases, and at any constant biaxial strain, a power law could be fitted to the stress versus extension rate data, the “consistency index” (K) increasing continuously with the strain and the “flow behaviour index” (n) being constant only up to a low strain value (≈0.25) and then decreasing. When compared to the CER mode, the CPS mode produced higher K and n values. For wheat flour doughs, an increase in K with extension may be associated to a strain-hardening phenomenon but the roles of viscoelasticity and lubricant thinning are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Babin P, Della Valle G, Chiron H, Cloetens P, Hoszowska J, Pernot P, Reguerre AL, Salvo L, Dendievel R (2006) Fast X-ray tomography analysis of bubble growth and foam setting during breadmaking. J Cereal Sci 43:393–397

    Article  Google Scholar 

  • Bagley EB, Christianson DD (1986) Response of commercial chemical leavened doughs to uniaxial compression. In: Faridi H, Faubion M (eds) Fundamentals of Dough rheology. AACC, St Paul, pp 27–36

    Google Scholar 

  • Bagley EB, Christianson DD, Martindale JA (1988) Uniaxial compression of hard wheat flour dough: data analysis using the upper convected Maxwell model. J Texture Stud 19:289–305

    Article  Google Scholar 

  • Bartolucci JC, Launay B (2000) Stress relaxation in wheat flour doughs following bubble inflation or lubricated squeezing flow and its relation to wheat flour quality. In: Schofield JP (ed) Wheat structure, biochemistry and functionnality. R Soc Chem, London, pp 323–331

    Google Scholar 

  • Bloksma AH, Bushuk W (1988) Rheology and chemistry of dough. In: Pomeranz Y (ed) Wheat chemistry and technology, 3rd edn, vol II. AACC, St. Paul, pp 131–345

    Google Scholar 

  • Charalambides MN, Wanigasooriya L, Williams JG, Chakrabarti S (2002) Biaxial deformation of dough using the bubble inflation technique. I Experimental. Rheol Acta 41:532–540

    Article  CAS  Google Scholar 

  • Chatrei SH, Macosko CW, Winter HH (1981) Lubricated squeezing flow: a new biaxial extensional rheometer. J Rheol 25:433–443

    Article  ADS  Google Scholar 

  • Dobraszczyk BJ, Roberts A (1994) Strain hardening and dough gas cell-wall failure in biaxial extension. J Cereal Sci 20:265–274

    Article  Google Scholar 

  • Dobraszczyk BJ, Morgenstern MP (2003) Rheology and the beadmaking process. J Cereal Sci 38:229–245

    Article  CAS  Google Scholar 

  • Dobraszczyk BJ, Smewing J, Albertini M, Maesmans G, Schofield JD (2003) Extensional rheology and stability of gas cell walls in bread doughs at elevated temperatures in relation to breadmaking performance. Cereal Chem 80:218–224

    Article  CAS  Google Scholar 

  • Dubat A, Dubois M, Launay B (2008) The Alveo-consistograph handbook, 2nd edn. AACC, St Paul, MN, 87 pp

    Google Scholar 

  • Guadarrama-Medina T, Shin T-Y, Venerus DC (2009) Direct comparison of equibiaxial elaongational viscosity measurements from lubricated squeezing flow and multiaxiales Dehnrheometer. Rheol Acta 48:11–17

    Article  CAS  Google Scholar 

  • Huang H, Kokini JL (1993) Measurement of biaxial extensional viscosity of wheat flour doughs. J Rheol 37:879–891

    Article  CAS  ADS  Google Scholar 

  • Janssen AM, van Vliet T, Vereijken JM (1996) Fundamental and of wheat flour dough and comparison with bread making performance. J Cereal Sci 23:43–54

    Article  CAS  Google Scholar 

  • Kokelaar JJ, van Vliet T, Prins A (1996) Strain hardening properties and extensibility of flour and gluten doughs in relation to breadmaking performance. J Cereal Sci 24:199–214

    Article  Google Scholar 

  • Kompani M, Venerus DC (2000) Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. I. Experimental analysis. Rheol Acta 39:444–451

    Article  CAS  Google Scholar 

  • Launay B (2008) Theoretical aspects of bubble inflation and new applications to dough rheology. In: Dubat A, Dubois M, Launay B (eds) The Alveo-consistograph handbook, 2nd edn. AACC, St Paul, MN, pp 13–22

    Google Scholar 

  • Launay B, Buré J (1977) Use of the Chopin Alveograph as a rheological tool. II. Dough properties in biaxial extension. Cereal Chem 54:1152–1158

    Google Scholar 

  • Launay B, Michon C (2008) Biaxial extension of wheat flour doughs: lubricated squeezing flow and stress relaxation properties. J Texture Stud 39:496–529

    Article  Google Scholar 

  • Lenk RS (1978) Polymer rheology. Applied Science, London

    Google Scholar 

  • Oliver JR, Allen HM (1992) The prediction of bread baking performance using the farinograph and extensograph. J Cereal Sci 15:79–89

    Article  Google Scholar 

  • Papanastasiou AC, Macosko CW, Scriven LE (1986) Analysis of lubricated squeezing flow. Int J Numer Methods Fluids 6:819–839

    Article  MATH  Google Scholar 

  • Rath CR, Gras PW, Wrigley CW, Walker CE (1990) Evaluation of dough properties from two grams of flour using the mixograph principle. Cereal Foods World 35:572–574

    Google Scholar 

  • Rouillé J, Della Valle G, Lefebvre J, Sliwinski E, van Vliet T (2005) Shear and extensional properties of bread doughs affected by their minor components. J Cereal Sci 42:45–57

    Article  Google Scholar 

  • Tanner RI, Dai SC, Qi F (2008) Bread dough rheology in biaxial and step-shear deformations. Rheol Acta 47:739–749

    Article  CAS  Google Scholar 

  • Van Vliet T (2008) Strain hardening as an indicator of bread-making performance: a review with discussion of dough as a requirement for gas retention. J Cereal Sci 48:1–9

    Article  Google Scholar 

  • Van Vliet T, Janssen AM, Bloskma AH, Walstra P (1992) Strain hardening of dough as a requirement for gas retension. J Texture Stud 23:439–460

    Article  Google Scholar 

  • Wang C, Dai S, Tanner I (2006) On the compressibility of bread dough. Korea-Australia Rheol J 18:127–131

    Google Scholar 

  • Wikström K, Bohlin L (1999) Extensional flow studies of wheat flour dough. II. Experimental method for measurements in constant extension rate squeezing flow and application to flours varying in breadmaking performance. J Cereal Sci 29:227–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Michon.

Appendix: calculation of t 1 (CER), t 2 (CPS) and t 2/t 1

Appendix: calculation of t 1 (CER), t 2 (CPS) and t 2/t 1

$$ t_1 =\frac{\varepsilon _{\rm b} }{{\mathop \varepsilon\limits^\cdot} _{\rm b} }=\frac{2L}{v}\varepsilon _{\rm b} $$
$$ t_1 =\frac{2L\varepsilon _{\rm b} }{v} $$
$$ {\mathop \varepsilon \limits^\cdot} _{\rm b} =\frac{1}{2}\frac{{\rm d}L}{L{\rm d}t}=\frac{1}{2}\frac{v}{L} $$
$$ \left( {v \textgreater 0} \right)\,\,\,\,L=L_{\rm 0} -vt $$
$$\begin{array}{lll} \varepsilon _{\rm b}&=&\frac{v}{2}\int {\frac{{\rm d}t}{L_0-vt}}=-\frac{1}{2}\big[ {Ln\big( {L_0-vt} \big)} \big]_0^{t_2 }\\[6pt] &=&-\frac{1}{2}\,Ln\frac{L_0 -vt_2 }{L_0 }=-\frac{1}{2}\;L\left( {1-\frac{vt_2 }{L_0 }} \right) \end{array}$$
$$ 1-\frac{vt_2 }{L_0 }=\exp \big( {-2\;\varepsilon _{\rm b} } \big) $$
$$ t_2 =\frac{L_0 }{v}\big[ {1-\exp \big( {-2\varepsilon _{\rm b} } \big)} \big] $$
$$ \frac{t_2 }{t_1 }=\frac{L_0 }{2L\varepsilon _{\rm b} }\big[ {1-\exp \big( {-2\varepsilon _{\rm b} } \big)} \big] $$
$$ \varepsilon _{\rm b} =-\frac{1}{2}Ln\frac{L}{L_0 } $$
$$ \frac{L_0 }{L}=\frac{1}{\exp \big( {-2\varepsilon _{\rm b} } \big)}=\exp \big( {2\varepsilon _{\rm b} } \big) $$
$$ \frac{t_2 }{t_1 }=\frac{1}{2\varepsilon _{\rm b} }\left[ {\exp \big( {2\varepsilon _{\rm b} } \big)-1} \right] $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouassi-Koffi, J.D., Launay, B., Davidou, S. et al. Lubricated squeezing flow of thin slabs of wheat flour dough: comparison of results at constant plate speed and constant extension rates. Rheol Acta 49, 275–283 (2010). https://doi.org/10.1007/s00397-009-0414-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0414-4

Keywords

Navigation