Skip to main content
Log in

Predictions of the excess pressure drop of Boger fluids through a 2:1:2 contraction–expansion geometry using non-equilibrium molecular dynamics

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Non-equilibrium molecular dynamics are used to generate the flow of polymer solutions, specifically of Boger fluids, through a planar 2:1:2 contraction–expansion geometry. The solvent molecules are represented by Lennard–Jones particles, while linear molecules are described by spring-monomers with a finite extensible non-linear elastic spring potential. The equations for Poiseuille flow are solved using a multiple time-scale algorithm extended to non-equilibrium situations. Simulations are performed at constant temperature using Nose–Hoover dynamics. At simulation conditions, changes in concentration show no significant effect on molecular conformation, velocity profiles, and stress fields, while variations in the Deborah number have a strong influence on fluid response. Increasing the magnitude of the Deborah number (De), larger deformation rates are developed in the flow region. For a Deborah number of one, the non-dimensional pressure drop presents values lower than the correspondent Newtonian case. However, for large Deborah numbers, the pressure drop increases above the Newtonian reference. An effective excess pressure drop above the Newtonian value is predicted for Boger fluids along this geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aboubacar M, Matallah H, Webster MF (2002a) Highly elastic solutions for Oldroyd-B and Phan-Thien/Tanner fluids with a finite volume/element method: planar contraction flows. J Non-Newton Fluid Mech 103:65–103

    Article  MATH  CAS  Google Scholar 

  • Aboubacar M, Matallah H, Tamaddon-Jahromi HR, Webster MF (2002b) Numerical prediction of extensional flows in contraction geometries: hybrid finite volume/element method. J Non-Newton Fluid Mech 104:125–164

    Article  MATH  CAS  Google Scholar 

  • Aguayo JP, Tamaddon-Jahromi HR, Webster MF (2008) Excess pressure-drop estimation in contraction and expansion flows for constant shear-viscosity, extension strain-hardening fluids. J Non-Newton Fluid Mech 153:157–176

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    MATH  Google Scholar 

  • Aoyagi T, Takimoto J, Doi M (2001) Molecular dynamics study of polymer melt confined between walls. J Chem Phys 115:552–559

    Article  CAS  ADS  Google Scholar 

  • Binding DM (1988) An approximate analysis for contraction and converging flows. J Non-Newton Fluid Mech 27:173–189

    Article  MATH  CAS  Google Scholar 

  • Binding DM (1991) Further considerations of axisymmetric contraction flows. J Non-Newton Fluid Mech 41:27–42

    Article  MATH  CAS  Google Scholar 

  • Binding D, Walters K (1988) On the use of flow through a contraction in estimating the extensional viscosity of mobile polymer solutions. J Non-Newton Fluid Mech 30:233–250

    Article  CAS  Google Scholar 

  • Binding DM, Phillips PM, Phillips TN (2006) Contraction/expansion flows: the pressure-drop and related issues. J Non-Newton Fluid Mech 137:31–38

    Article  CAS  Google Scholar 

  • Bird R, Curtiss C, Armstrong R, Hassager O (1987) Dynamics of polymeric liquids: volume 2 kinetic theory. Wiley, New York

    Google Scholar 

  • Castillo-Tejas J, Alvarado JFJ, González-Alatorre G, Luna-Barcenas G, Sanchez IC, Macias-Salinas R, Manero O (2005) Non-equilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and Poiseuille flows; instabilities and slip. J Chem Phys 123:054907

    Article  PubMed  ADS  Google Scholar 

  • Castillo-Tejas J, Rojas-Morales A, López-Medina F, Alvarado JFJ, Luna-Barcenas G, Bautista F, Manero O (2009) Flow of linear molecules through a 4:1:4 contraction–expansion using non-equilibrium molecular dynamics: extensional rheology and pressure drop. J Non-Newton Fluid Mech. doi:10.1016/j.jnnfm.2009.04.005

    Google Scholar 

  • Chilcott MD, Rallison JM (1988) Creeping flow of dilute polymer solutions past cylinders and spheres. J Non-Newton Fluid Mech 29:381–432

    Article  MATH  CAS  Google Scholar 

  • Cogswell FN (1972) Converging flow of polymer melts in extrusion dies. Polym Eng Sci 12:64–73

    Article  CAS  Google Scholar 

  • Cogswell FN (1978) Converging flow and stretching flow: a compilation. J Non-Newton Fluid Mech 4:23–38

    Article  CAS  Google Scholar 

  • Doyle PS, Shaqfeh ESG, McKinley GH, Spiegelberg SH (1998) Relaxation of dilute polymer solutions following extensional flow. J Non-Newton Fluid Mech 76:79–110

    Article  MATH  CAS  Google Scholar 

  • Evans D, Morriss G (1990) Statistical mechanics of non-equilibrium liquids. Academic, New York

    Google Scholar 

  • Khare R, de Pablo J, Yethiraj A (1996) Rheology of confined polymer melts. Macromolecules 29:7910–7918

    Article  CAS  ADS  Google Scholar 

  • Kremer K, Grest G (1990) Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys 92:5057–5086

    Article  CAS  ADS  Google Scholar 

  • Kröguer M, Makhloufi R (1996) Wormlike micelles under shear flow: a microscopic model studied by nonequilibrium-molecular-dynamics computer simulations. Phys Rev E 53:2531–2536

    Article  ADS  Google Scholar 

  • Lubansky AS, Boger DV, Servais C, Burbidge AS, Cooper-White JJ (2007) An approximate solution to flow through a contraction for high Trouton ratio fluids. J Non-Newton Fluid Mech 144:87–97

    Article  CAS  Google Scholar 

  • Maia JM (1999) Theoretical modelling of fluid S1: a comparative study of constitutive models in sample and complex flows. J Non-Newton Fluid Mech 85:107–125

    Article  MATH  CAS  Google Scholar 

  • Maia JM, Binding DM (1999) Influence of elongational properties on the contraction flow of polyisobutylene in a mixed solvent. Rheological Acta 38:160–171

    Article  CAS  Google Scholar 

  • Martyna GJ, Tuckerman ME, Tobias DJ, Klein ML (1996) Explicit reversible integrators for extended systems dynamics. Mol Phys 87:1117–1157

    Article  CAS  ADS  Google Scholar 

  • Mazur J, Guttman CM, McCrackin FL (1973) Monte Carlo studies of self-interacting polymer chains with excluded volume II. Shape of a chain. Macromolecules 6:872–874

    ADS  Google Scholar 

  • Mi X, Chwang A (2003) Molecular dynamics simulations of nanochannel flows at low Reynolds numbers. Molecules 8:193–206

    Article  CAS  Google Scholar 

  • Nigen S, Walters K (2002) Viscoelastic contraction flows: comparison of axisymmetric and planar configurations. J Non-Newton Fluid Mech 102:343–359

    Article  MATH  CAS  Google Scholar 

  • Nose S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  CAS  ADS  Google Scholar 

  • Oliveira MS, Rodd LE, McKinley GH, Alves MA (2008) Simulations of extensional flow in microrheometric devices. Microfluids and Nanofluids 5:809–826

    Article  CAS  Google Scholar 

  • Padding JT, Boek ES (2004) Influence of shear flow on the formation of rings in wormlike micelles: a nonequilibrium molecular dynamics study. Phys Rev E 70:1–15

    Article  Google Scholar 

  • Pryde JA (1969) The liquid state. Hutchinson University Library, London

    Google Scholar 

  • Rapaport DC (2004) The art of molecular dynamics simulation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Rothstein JP, McKinley GH (1999) Extensional flow of a polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion. J Non-Newton Fluid Mech 86:61–88

    Article  MATH  CAS  Google Scholar 

  • Rothstein JP, McKinley GH (2001) The axisymmetric contraction–expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop. J Non-Newton Fluid Mech 98:33–63

    Article  MATH  CAS  Google Scholar 

  • Szabo P, Rallison JM, Hinch EJ (1997) Start-up of flow of a FENE-fluid through a 4:1:4 constriction in a tube. J Non-Newton Fluid Mech 72:73–86

    Article  CAS  Google Scholar 

  • Todd B, Evans D, Daivis P (1995) Pressure tensor for inhomogeneous fluids. Phys Rev E 52:1627–1638

    Article  CAS  ADS  Google Scholar 

  • Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001

    Article  CAS  ADS  Google Scholar 

  • Varnik F, Baschnagel J, Binder K (2000) Molecular dynamics results on the pressure tensor of polymer films. J Chem Phys 113:4444–4453

    Article  CAS  ADS  Google Scholar 

  • Walters K, Webster MF (2003) The distinctive CFD challenges of computational rheology. Int J Numer Methods Fluids 43:577–596

    Article  MATH  MathSciNet  Google Scholar 

  • Wapperom P, Keunings R (2001) Numerical simulation of branched polymer melts in transient complex flow using pom-pom models. J Non-Newton Fluid Mech 97:267–281

    Article  MATH  CAS  Google Scholar 

  • Warner HR Jr (1972) Kinetic theory and rheology of dilute suspensions of finitely extensible dumbbells. Ind Eng Chem Fundam 11:379–387

    Article  CAS  MathSciNet  Google Scholar 

  • Xu Z, de Pablo J, Kim S (1995) Transport properties of polymer melts from non-equilibrium molecular dynamics. J Chem Phys 102:5836–5844

    Article  CAS  ADS  Google Scholar 

  • Zhang J, Hansen JS, Todd BD, Daivis PJ (2007) Structural and dynamical properties for confined polymers undergoing planar Poiseuille flow. J Chem Phys 126(144907):1–14

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Consejo Nacional de Ciencia y Tecnología (CONACYT) through the projects 47192 and 83501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Castillo Tejas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, G.G., Tejas, J.C., Vallejo, J.P.A. et al. Predictions of the excess pressure drop of Boger fluids through a 2:1:2 contraction–expansion geometry using non-equilibrium molecular dynamics. Rheol Acta 48, 1017–1030 (2009). https://doi.org/10.1007/s00397-009-0385-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0385-5

Keywords

Navigation