Skip to main content

Advertisement

Log in

Viscoelastic properties of POSS–styrene nanocomposite blended with polystyrene

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Polyhedral oligomeric silsesquioxane (POSS) are hybrid nanostructures of about 1.5 nm in size. These silicon (Si)-based polyhedral nanostructures are attached to a polystyrene (PS) backbone to produce a polymer nanocomposite (POSS–styrene). We have solution blended POSS–styrene of \(\overline{M}_w =14.5\times 10^3\;\rm{g/mol}\) with commercial polystyrene (PS), \(\overline{M}_w =2.8\times 10^5\;\rm{g/mol}\), and studied the rheological behavior and thermal properties of the neat polymeric components and their blends. The concentration of POSS–styrene was varied from 3 up to 20 wt.%. Thermal analysis studies suggest phase miscibility between POSS–styrene and the PS matrix. The blends displayed linear viscoelastic regime and the time–temperature superposition principle applied to all blends. The flow activation energy of the blends decreased gradually with respect to the matrix as the POSS–styrene concentration increased. Strikingly, it was found that POSS–styrene promoted a monotonic decrease of zero-shear rate viscosity, η 0, as the concentration increased. Rheological data analyses showed that the POSS–styrene increased the fractional free volume and decreased the entanglement molecular weight in the blends. In contrast, blending the commercial PS with a PS of \(\overline{M}_w =5\times 10^3\;\rm{g/mol}\) did not show the same lubrication effect as POSS–styrene. Therefore, it is suggested that POSS particles are responsible for the monotonic reduction of zero-shear rate viscosity in the blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abad MJ, Barral L, Fasce DP, Williams RJJ (2003) Epoxy networks containing large mass fractions of a monofunctional polyhedral oligomeric silsesquioxane (POSS). Macromolecules 36:3128–3135

    Article  ADS  CAS  Google Scholar 

  • Baldi F, Bignotti F, Fina A, Tabuani D, Riccò T (2007) Mechanical characterization of polyhedral oligomeric silsesquioxane/polypropylene blends. J Appl Polym Sci 105:935–943

    Article  CAS  Google Scholar 

  • Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Silsesquioxanes. Chem Rev 95:1409–1430

    Article  CAS  Google Scholar 

  • Batchelor GK (1970) Stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16:99–127

    Article  CAS  Google Scholar 

  • Ciolacu FCL, Choudhury NR, Dutta N, Kosior E (2007) Molecular level stabilization of poly(ethylene terephthalate) with nanostructured open cage trisilanolisobutyl–POSS. Macromolecules 40:265–272

    Article  ADS  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Einstein A (1906) On the theory of Brownian movement. Ann Phys (Leipz) 19:371–381

    Article  ADS  CAS  Google Scholar 

  • Ellsworth MW, Gin DL (1999) Recent advances in the design and synthesis of polymer–inorganic nanocomposites. Polym News 24:331–341

    CAS  Google Scholar 

  • Feger C, Franke H (1996) In: Ghosh MK, Mittal MK (eds) Polyimides: fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  • Fu BX, Yang L, Somani RH, Zong SX, Hsiao BS, Phillips S, Blanski R, Ruth P (2001) Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions. J Polym Sci B: Polym Phys 39:2727–2739

    Article  CAS  Google Scholar 

  • Fu BX, Lee A, Haddad TS (2004) Styrene–butadiene–styrene triblock copolymers modified with polyhedral oligomeric silsesquioxanes. Macromolecules 37:5211–5218

    Article  ADS  CAS  Google Scholar 

  • Haddad TS, Lichtenhan JD (1996) Hybrid organic–inorganic thermoplastics: styryl-based polyhedral oligomeric silsesquioxane polymers. Macromolecules 29:7302–7304

    Article  ADS  CAS  Google Scholar 

  • Haddad TS, Stapleton R, Jeon HG, Mather PT, Lichtenhan JD, Phillips S (1999) Nanostructured hybrid organic/inorganic materials. Silsesquioxane modified plastics. Am Chem Soc, Div Polym Chem Polym Prepr 40:496–497

    CAS  Google Scholar 

  • Haddad TS, Mather PT, Jeon HG, Chun SB, Phillips SH (2000) Hybrid inorganic/organic diblock copolymers. Nanostructure in polyhedral oligomeric silsesquioxane polynorbornenes. Mat Res Soc Symp Proc 628:CC2.6.1–CC2.6.7

    Google Scholar 

  • Han CD, Kim JH (1987) Rheological technique for determining the order–disorder transition of block copolymers. J Polym Sci B: Polym Phys 25:741–1764

    Article  Google Scholar 

  • Hong B, Thoms TPS, Murfee HJ, Lebrun MJ (1997) Highly dendritic macromolecules with core polyhedral silsesquioxane functionalities. Inorg Chem 36:6146–6147

    Article  CAS  Google Scholar 

  • Joshi M, Butola BS (2004) Polymeric nanocomposites–polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J Macromol Sci 44:389–410

    Google Scholar 

  • Joshi M, Butola BS, Simon G, Kukaleva N (2006) Rheological and viscoelastic behavior of hdpe/octamethyl–poss nanocomposites. Macromolecules 39:1839–1849

    Article  ADS  CAS  Google Scholar 

  • Kannan RY, Salacinski HJ, Ghanavi JE, Narula A, Odlyha M, Peirovi H, Butler PE, Seifalian AM (2007) Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 119:1653–1662

    Article  PubMed  CAS  Google Scholar 

  • Kim GM, Qin H, Fang X, Sun FC, Mather PT (2003) Hybrid epoxy-based thermosets based on polyhedraloligosilsesquioxane: cure behavior and toughening mechanisms. J Polym Sci 41:3299–3313

    CAS  Google Scholar 

  • Kim SK, Heo SJ, Koak JY, Lee JH, Lee YM, Chung DJ, Lee JI, Hong SD (2007) A biocompatibility study of a reinforced acrylic-based hybrid denture composite resin with polyhedraloligosilsesquioxane. J Oral Rehab 34:389–395

    Article  CAS  Google Scholar 

  • Kopesky ET, Haddad TS, Cohen RE, McKinley GH (2004) Thermomechanical properties of poly(methyl methacrylate)s containing tethered and untethered polyhedral oligomeric silsesquioxanes. Macromolecules 37:8992–9004

    Article  ADS  CAS  Google Scholar 

  • Kopesky ET, Haddad TS, McKinley GH, Cohen RE (2005) Miscibility and viscoelastic properties of acrylic polyhedral oligomeric silsesquioxane-poly(methyl methacrylate) blends. Polymer 46:4743–4752

    CAS  Google Scholar 

  • Kopesky ET, McKinley GH, Cohen RE (2006a) Toughened poly(methyl methacrylate) nanocomposites by incorporating polyhedral oligomeric silsesquioxanes. Polymer 47:299–309

    Article  CAS  Google Scholar 

  • Kopesky ET, Boyes SG, Treat N, Cohen RE, McKinley GH (2006b) Thermorheological properties near the glass transition of oligomeric poly(methyl methacrylate) blended with acrylic polyhedral oligomeric silsesquioxane nanocages. Rheol Acta 45:971–981

    Article  CAS  Google Scholar 

  • Larson RG, Sridhar T, Leal LG, McKinley GH, Likhtman AE, McLeish TCB (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47:809–818

    Article  ADS  CAS  Google Scholar 

  • Li G, Wang L, Ni Hi, Pittman Charles U Jr (2001a) Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym 11:123–154

    Article  CAS  Google Scholar 

  • Li GZ, Wang L, Toghiani H, Daulton TL, Koyama K, Pittman CU (2001b) Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends. Macromolecules 34:8686–8693

    Article  ADS  CAS  Google Scholar 

  • Li GZ, Wang L, Toghiani H, Daulton TL, Pittman CU (2002) Viscoelastic and mechanical properties of vinyl ester (VE)/multifunctional polyhedral oligomeric silsesquioxane (POSS) nanocomposites and multifunctional POSS–styrene copolymers. Polymer 43:4167–4176

    Article  CAS  Google Scholar 

  • Lichtenhan JD (1996) Silsesquioxane-based polymers. In: Salamone JS (ed) Polymeric materials encyclopedia. CRC, New York

    Google Scholar 

  • Lichtenhan JD, Vu NQ, Carter JA, Gilman JW, Feher FJ (1993) Silsesquioxane–siloxane copolymers from polyhedral silsesquioxanes. Macromolecules 26:2141–2142

    Article  ADS  CAS  Google Scholar 

  • Lichtenhan JD, Otonari YA, Carr MJ (1995) Linear hybrid polymer building blocks: methacrylate-functionalized polyhedral oligomeric silsesquioxane monomers and polymers. Macromolecules 28:8435–8437

    Article  ADS  CAS  Google Scholar 

  • Mackay ME, Dao TT, Tuteja A, Ho DL, Van Horn B, Kim HC, Hawker CJ (2003) Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nature Materials 2:762–766

    Article  PubMed  ADS  CAS  Google Scholar 

  • Mantz RA, Jones PF, Chaffee KP, Lichtenhan JD, Gilman JW, Ismail IMK, Burmeister MJ (1996) thermolysis of polyhedral oligomeric silsesquioxane (poss) macromers and poss–siloxane copolymers. Chem Mater 8:1250–1259

    Article  CAS  Google Scholar 

  • Mather PT, Jeon HG, Romo-Uribe A, Haddad TS, Lichtenhan JD (1999) Mechanical relaxation and microstructure of poly(norbornyl-poss) copolymers. Macromolecules 32:1194–1203

    Article  ADS  CAS  Google Scholar 

  • McCusker C, Carrollb JB, Rotello VM (2005) Cationic polyhedral oligomeric silsesquioxane (POSS) units as carriers for drug delivery processes. Chem Commun 8:996–998

    Article  Google Scholar 

  • Pan Q, Fan X, Chen X, Zhou Q (2006) Progress in hybrid materials based on polyhedral oligomeric silsesquioxanes. Prog Chem 18:616–621

    CAS  Google Scholar 

  • Pu K, Fan Q, Wang L, Huang W (2006) Advances in POSS-containing polymers. Prog Chem 18:609–615

    CAS  Google Scholar 

  • Romo-Uribe A, Mather PT, Haddad TS, Lichtenhan JD (1998) Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. J Polym Sci, Polym Phys. 36:1857–1872

    Article  CAS  Google Scholar 

  • Siang Soh M, Sellinger A, UJ Yap A (2006) Dental nanocomposites. Curr Nanosci 2:373–381

    Article  ADS  Google Scholar 

  • Tamaki R, Choi J, Laine RM (2000) A polyimide nanocomposite from octa(aminophenyl) silsesquioxane. Chem Mater 15:793–797

    Article  Google Scholar 

  • Wu S (1987a) Entanglement between dissimilar chains in compatible polymer blends: poly(methyl methacrylate) and poly(vinylidene fluoride). J Polym Sci B: Polym Phys 25:557–566

    Article  CAS  Google Scholar 

  • Wu S (1987b) Entanglement, friction, and free volume between dissimilar chains in compatible polymer blends. J Polym Sci B: Polym Phys 25:2511–2529

    Article  CAS  Google Scholar 

  • Wu J, Haddad TS, Kim GM, Mather PT (2007) Rheological behavior of entangled polystyrene–polyhedral oligosilsesquioxane (POSS) copolymers. Macromolecules 40:544–554

    Article  ADS  CAS  Google Scholar 

  • Xu H, Yang B, Wang J, Guang S, Li C (2007) Preparation, Tg improvement, and thermal stability enhancement mechanism of soluble poly(methyl methacrylate) nanocomposites by incorporating octavinyl polyhedral oligomeric silsesquioxanes. J Polym Sci A: Polym Chem 45:5308–5317

    Article  CAS  Google Scholar 

  • Zhang Q, Archer LA (2002) Poly(ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

  • Zhang C, Babonneau F, Bonhomme C, Laine RM, Soles CL, Hristov HA, Yee AF (1998) Highly porous polyhedral silsesquioxane polymers: synthesis and characterization. J Am Chem Soc 120:8380–8391

    Article  CAS  Google Scholar 

  • Zhang W, Fu BX, Seo Y, Schrag E, Hsiao B, Mather PT, Yang NL, Xu D, Ade H, Rafailovich M, Sokolov J (2002) Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules 35:8029–8038

    Article  ADS  CAS  Google Scholar 

  • Zheng L, Farris RJ, Coughlin EB (2001) Novel polyolefin nanocomposites: synthesis and characterizations of metallocene-catalyzed polyolefin polyhedral oligomeric silsesquioxane copolymers. Macromolecules 34:8034–8039

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees; the manuscript has benefited from their scientific insight. Special thanks to Prof. Patrick T. Mather (Syracuse University) for his valuable criticism to this work. BM Zárate-Hernández acknowledges the financial support of the Academia Mexicana de Ciencias, under the program “Verano de la Investigación Científica”. ME Romero-Guzmán was supported by a post-doctoral fellowship from DGAPA–UNAM. Thanks to CONACyT, Mexico, (CIAM 2006, project 58646) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Romo-Uribe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero-Guzmán, M.E., Romo-Uribe, A., Zárate-Hernández, B.M. et al. Viscoelastic properties of POSS–styrene nanocomposite blended with polystyrene. Rheol Acta 48, 641–652 (2009). https://doi.org/10.1007/s00397-009-0358-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0358-8

Keywords

Navigation