Skip to main content
Log in

Stress relaxation behavior of PMMA/PS polymer blends

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Almusallam AS, Larson RG, Solomon MJ (2003) Anisotropy and breakup of extended droplets in immiscible blends. J Non-Newton Fluid Mech 113:29–48

    Article  MATH  CAS  Google Scholar 

  • Ansari M, Haghtalab A, Semsarzadeh MA (2006) Effects of compatibilization on rheological properties of PS/PB blends and investigation of Doi–Otha scaling relationship in double start-up of shear experiments. Rheol Acta 46:983–993

    Article  Google Scholar 

  • Bousmina M (1999) Rheology o polymer blends: linear model for viscoelastic emulsions. Rheol Acta 38:73–83

    Article  CAS  Google Scholar 

  • Calvão PS, Yee M, Demarquette NR (2005) Effect of composition on the linear viscoelastic behvior of PMMA/PP blends. Polymer 46(8):2610–2620

    Article  Google Scholar 

  • Doi M, Otha T (1991) Dynamics and rheology of complex interfaces I. J Chem Phys 95(2):1242–1248

    Article  ADS  CAS  Google Scholar 

  • Fahrländer M, Bruch M, Menke T, Friedrich C (2001) Rheological behavior of PS-melts containing surface modified PMMA-particles. Rheol Acta 40:1–9

    Article  Google Scholar 

  • Gramespacher H, Meissner J (1992) Interfacial tension between polymer melts measured by shear oscillations of their blends. J Rheol 36(6):1127–1141

    Article  ADS  CAS  Google Scholar 

  • Handge UA, Okamoto K, Münstedt H (2007) Recoverable deformation and morphology after uniaxial elongation of a polystyrene/linear low density polyethylene blend. Rheol Acta 46:1197–1209

    Article  CAS  Google Scholar 

  • Hayashi R, Takahashi M, Yamane H, Jinnai H, Watanabe H (2001a) Dynamic interfacial properties of polymer blends under large step strains: shape recovery of a single droplet. Polymer 42(2):757–764

    Article  CAS  Google Scholar 

  • Hayashi R, Takahashi M, Kajihara T, Yamane H (2001b) Application of large double-step shear strains to analyze deformation and shape recovery of a polymer droplet in an immiscible polymer matrix. J Rheol 45(3):627–639

    Article  ADS  CAS  Google Scholar 

  • Iza M, Bousmina M (2000) Nonlinear rheology of immiscible polymer blends: step strain experiments. J Rheol 44(6):1363–1384

    Article  ADS  CAS  Google Scholar 

  • Jacobs U, Fahrländer M, Winterhalter J, Friedrich C (1999) Analysis of Palierne’s emulsion model in the case of viscoelastic interfacial properties. J Rheol 43(6):1495–1509

    Article  ADS  CAS  Google Scholar 

  • Jansseune T, Moldenaers P, Mewis J (2003) Morphology and rheology of concentrated biphasic blends in steady shear flow. J Rheol 47(4):829–845

    Article  ADS  CAS  Google Scholar 

  • Jeon HK, Macosko CW (2003) Visualization of block copolymer distribution on a sheared drop. Polymer 44(18):5381–5386

    Article  CAS  Google Scholar 

  • Lee HM, Park OO (1994) Rheology and dynamics of immiscible polymer blends. J Rheol 38:1405–1425

    Article  ADS  CAS  Google Scholar 

  • Levitt L, Macosko CW (1999) Shearing of polymer drops with interface modification. Macromolecules 32(19):6270–6277

    Article  ADS  CAS  Google Scholar 

  • Macaúbas PHP, Demarquette NR, Dealy JM (2005) Nonlinear viscoelasticity of PP/PS/SEBS blends. Rheol Acta 44(3):295–312

    Article  Google Scholar 

  • Macaúbas PHP, Kawamoto H, Takahashi M, Okamoto K, Takigawa T (2007) Shape and structure recovery of an LCP droplet under a large step strain: observation and stress calculation. Rheol Acta 46(7):921–932

    Article  Google Scholar 

  • Martin JD, Velankar SS (2007) Effects of compatibilizer on immiscible polymer blends near phase inversion. J Rheol 51(4):669–692

    Article  ADS  CAS  Google Scholar 

  • Mechbal N, Bousmina M (2007) Effect of copolymer addition on drop deformation during uniaxial elongation and during relaxation after cessation of flow. Macromolecules 40:967–975

    Article  ADS  CAS  Google Scholar 

  • Migler KB, Hobbie EK, Qiao F (1999) In line study of droplet deformation in polymer blends in channel flow. Polym Eng Sci 39(11):2282–2291

    Article  CAS  Google Scholar 

  • Moan M, Huitric J, Médéric P, Jarrin J (2000) Rheological properties and reactive compatibilization of immiscible polymer blends. J Rheol 44(6):1227–1245

    Article  ADS  CAS  Google Scholar 

  • Okamoto K, Takahashi M, Yamane H, Kashihara H, Watanabe H, Masuda T (1999) Shape recovery of a dispersed droplet phase and stress relaxation after application of step shear strains in a polystyrene polycarbonate blend melt. J Rheol 43(4):951–965

    Article  ADS  CAS  Google Scholar 

  • Okamoto K, Iwatsuki S, Ishikawa M, Takahashi M (2008) Hydrodynamic interaction and coalescence of two droplets under large step shear strains. Polymer 49(8):2014–2017

    Article  CAS  Google Scholar 

  • Palierne JF (1990) Linear rheology of viscoelastic emulsions with interfacial tension. Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  • Riemann R-E, Cantow H-J, Friedrich C (1996) Rheological investigation of form relaxation and interface relaxation process in polymer blends. Polym Bull 36:637–643

    Article  CAS  Google Scholar 

  • Riemann R-E, Cantow H-J, Friedrich C (1997) Interpretation of a new interface-governed relaxation process in compatibilized polymer blends. Macromolecules 18:5476–5480

    Article  Google Scholar 

  • Takahashi M, Macaúbas PHP, Okamoto K, Jinnai H, Nishikawa Y (2007) Stress prediction for polymer blends with various shapes of droplet phase. Polymer 48(8):2371–2379

    Article  CAS  Google Scholar 

  • Tjahjadi M, Ottino JM, Stone HA (1994) Estimating interfacial tension via relaxation of drop shapes and filament breakup. AIChE J 40:385–394

    Article  CAS  Google Scholar 

  • Underwood EE (1970) Quantitative sterology. Addison Wesley, Reading, MA

    Google Scholar 

  • Van Hemelrijck E, Van Puyvelde P, Velankar S, Macosko CW, Moldenaers P (2004) Interfacial elasticity and coalescence suppression in compatibilized blends. J Rheol 48:143–159

    Article  Google Scholar 

  • Van Hemelrijck E, Van Puyvelde P, Velankar S, Macosko CW, Moldenaers P (2005) The effect of block copolymer architecture on the coalescence and interfacial elasticity in compatibilized polymer blends. J Rheol 49:783–798

    Article  Google Scholar 

  • Van Puyvelde P, Velankar S, Moldenaers P (2001) Rheology and morphology of compatibilized polymer blends. Curr Opin Colloid Interface Sci 6:457–463

    Article  Google Scholar 

  • Van Puyvelde P, Velankar S, Mewis J, Moldenaers P (2002) Effect of Marangoni stresses on the deformation and coalescence in compatibilized immiscible polymer blends. Polym Eng Sci 42(10):1956–1964

    Article  Google Scholar 

  • Velankar S, Van Puyvelde P, Mewis J, Moldenaers P (2001) Effect of compatibilization on the breakup of polymeric drops in shear flow. J Rheol 45:1007–1019

    Article  ADS  CAS  Google Scholar 

  • Velankar S, Van Puyvelde P, Mewis J, Moldenaers P (2004) Steady-shear rheological properties of model compatibilized blends. J Rheol 48:725–744

    Article  ADS  CAS  Google Scholar 

  • Vinckier I, Moldenaers P, Mewis J (1996) Relationship between rheology and morphology of model blends in steady shear flow. J Rheol 40(4):613–631

    Article  ADS  CAS  Google Scholar 

  • Wang J, Velankar S (2006a) Strain recovery of model immiscible blends without compatibilizer. Rheol Acta 45:297–304

    Article  CAS  Google Scholar 

  • Wang J, Velankar S (2006b) Strain recovery of model immiscible blends: effects of added compatibilizer. Rheol Acta 45:741–753

    Article  CAS  Google Scholar 

  • Yamane H, Takahashi M, Hayashi R, Okamoto K, Kashihara H, Masuda T (1998) Observation of deformation and recovery of poly(isobutylene) droplet in a poly(isobutylene)/poly(dimethyl siloxane) blend after application of step shear strain. J Rheol 42(3):567–580

    Article  ADS  CAS  Google Scholar 

  • Yee M, Calvão P, Demarquette NR (2007) Rheological behavior of poly(methyl metacrylate)/polystyrene (PMMA/PS) blends with the addition of PMMA-ran-PS. Rheol Acta 46:653–664

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank FAPESP, CNPq, and CAPES for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole R. Demarquette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, M., Souza, A.M.C., Valera, T.S. et al. Stress relaxation behavior of PMMA/PS polymer blends. Rheol Acta 48, 527–541 (2009). https://doi.org/10.1007/s00397-009-0349-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-009-0349-9

Keywords

Navigation