Skip to main content
Log in

Filament stretching of carbon nanotube suspensions

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This paper reports the application of a recently developed filament stretching protocol for the study of the extensional rheology of both treated and untreated carbon nanotubes (CNT) suspended within an epoxy resin. It was experimentally observed that filaments formed by treated and untreated CNT suspensions behaved differently after initial stretching. The filament thinning process of the base epoxy was consistent with a simple Newtonian fluid, whilst the filament of treated CNT suspensions also thinned in a Newtonian way but with an enhanced extensional viscosity. Filaments formed with untreated CNT suspensions behaved in a non-uniform way with local fluctuation in filament diameter, and it was not possible to obtain reliable extensional viscosity data. Irregularity of the untreated CNT filaments was consistent with coupled optical images, where spatial variation in CNT aggregate concentration was observed. In the case of treated CNT suspensions, the enhanced extensional viscosity was modelled in terms of the alignment of CNTs in the stretching direction, and the degree of alignment was subsequently estimated using a simple orientation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Advani SG, Tucker CL III (1990) Closure approximations for three-dimensional structure tensors. J Rheol 34:367–386

    Article  Google Scholar 

  • Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265:1212–1215

    Article  CAS  Google Scholar 

  • Anna SL, McKinley GH (1999) Quantifying the stretching and breakup of dilute polymer solutions in two different filament stretching experiments. In: A. I. Ch. E. Annual Meeting, paper 175a, Dallas, 31 October–5 November 1999.

  • Anna SL, McKinley GH (2001a) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45(1):115–138

    Article  CAS  Google Scholar 

  • Anna SL, McKinley GH, Nguyen DA, Sridhar T, Muller SJ, Huang J, James DF (2001b) An interlaboratory comparison of measurements from filament-stretching rheometers using common test fluids. J Rheol 45(1):83–114

    Article  CAS  Google Scholar 

  • Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  Google Scholar 

  • Batchelor GK (1971) The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J Fluid Mech 46:813–829

    Article  Google Scholar 

  • Bazilevsky AV, Entov VM, Rozhkov AN (1990) Liquid filament microrheometer and some of its applications. In: Oliver DR (ed) Third European Rheology Conference. Elsevier, New York

    Google Scholar 

  • Calvert P (1999) Nanotube composites: A recipe for strength. Nature 399:210–211

    Article  CAS  Google Scholar 

  • Davis VA, Ericson LM, Nicholas A, Parra-Vasquez G, Fan H, Wang Y, Prieto V, Longoria JA, Ramesh S, Saini RK, Kittrell C, Billups WE, Wade Adams W, Hauge RH, Smalley RE, Pasquali M (2004) Phase behavior and rheology of SWNTs in superacids. Macromolecules 37:154–160

    Article  CAS  Google Scholar 

  • Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3(9):1215–1218

    Article  CAS  Google Scholar 

  • Dyke CA, Tour JM (2004) Overcoming the insolubility of carbon nanotubes through high degrees of sidewall functionalization. Chem Eur J 10:812–817

    Article  CAS  Google Scholar 

  • Harlen OG (1996) Presentation at the Issac Newton Institute Program on The Dynamics of Complex Fluids, Cambridge, England, April 1996

  • Hinch EJ, Leal LG (1975) Constitutive equations in suspension mechanics. Part I. J Fluid Mech 71:481–495

    Article  Google Scholar 

  • Hinch EJ, Leal LG (1976) Constitutive equations in suspension mechanics. Part II. J Fluid Mech 76:187–208

    Article  Google Scholar 

  • Huang YY, Ahir SV, Terentjev EM (2006) Dispersion rheology of carbon nanotubes in a polymer matrix. Phys Rev B 73:125422-1-9

    Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix, nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Jäder J, Willenbacher N, Engström G, Järnström L (2005) The influence of extensional properties on the dewatering of coating colours. J Pulp Pap Sci 31:181–187

    Google Scholar 

  • Kordás K, Mustonen T, Tóth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan PM (2006) Inkjet printing of electrically conductive patterns of Carbon Nanotubes. Small 2:1021–1025

    Article  Google Scholar 

  • Leal LG, Hich EJ (1973) Theoretical studies of a suspension of rigid particles affected by Brownian couples. Rheol Acta 12:127–132

    Article  Google Scholar 

  • Liang RF, Mackley MR (1994) Rheological characterization of the time and strain dependence for polyisobutylene solutions. J Non-Newton Fluid Mech 52:387–405

    Article  CAS  Google Scholar 

  • Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92:048302-1–048302-4

    Google Scholar 

  • Ma AWK, Chinesta F, Mackley MR (2007a) The rheology and microstructure of carbon nanotube suspensions. In: 4th Annual European Rheology Conference, Napoli, 12–14 April 2007 (oral presentation)

  • Ma AWK, Chinesta F, Mackley MR (2007b) The rheology and modelling of chemically treated Carbon Nanotube suspensions. J Rheol (in review)

  • Matta JE, Tytus RP (1990) Liquid stretching using a falling cylinder. J Non-Newton Fluid Mech 35:215–229

    Article  CAS  Google Scholar 

  • McKinley GH (2000) In: Binding DM, Hudson NE, Mewis J, Piau J-M, Petrie CJS et al (eds) Proceedings of the 13th International Congress on Rheology, vol 1. British Society of Rheology, Cambridge, pp 15–22

  • McKinley GH, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415

    Article  Google Scholar 

  • McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44(3):653–670

    Article  CAS  Google Scholar 

  • Papageorgiou DT (1995) On the breakup of viscous liquid threads. Phys Fluids 7:1529–1544

    Article  CAS  Google Scholar 

  • Petrie CJS (1999) The rheology of fibre suspensions. J Non-Newton Fluid Mech 87:369–402

    Article  CAS  Google Scholar 

  • Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multi-walled carbon Nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  • Rahatekar SS, Koziol KKK, Butler SA, Elliott JA, Shaffer MSP, Mackley MR, Windle AH (2006) Optical microstructure and viscosity enhancement for an epoxy resin matrix containing multi-wall carbon nanotubes. J Rheol 50(5):599–610

    Article  CAS  Google Scholar 

  • Saito S (1997) Carbon Nanotubes for next-generation electronics devices. Science 278:77–78

    Article  CAS  Google Scholar 

  • Shaqfeh ESG, Fredricksen GH (1990) The hydrodynamic stress in a suspension of rods. Phys Fluids A 2:7–24

    Article  CAS  Google Scholar 

  • Singh C, Shaffer MSP, Windle AH (2003) Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41:359–368

    Article  CAS  Google Scholar 

  • Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  CAS  Google Scholar 

  • Tuladhar TR, Mackley MR (2008) Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids. J Non-Newton Fluid Mech 148:97–108

    Google Scholar 

  • Weinberger GB, Goddard JD (1974) Extensional flow behaviour of polymer solutions and particle suspensions in spinning motion. Int J Multiph Flow 1:465–486

    Article  Google Scholar 

  • Xu J, Chatterjee S, Koelling KW, Wang Y, Bechtel SE (2005) Shear and extensional rheology of carbon nanofiber suspensions. Rheol Acta 44:537–562

    Article  CAS  Google Scholar 

  • Yao M, Spiegelberg SH, McKinley GH (2000) Fluid dynamics of weakly strain-hardening fluids in filament stretching devices. J Non-Newton Fluid Mech 89:1–43

    Article  CAS  Google Scholar 

  • Zirnsak MA, Hur DU, Boger DV (1994) Normal stresses in fibre suspensions. J Non-Newton Fluid Mech 54:153–193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. A. H. Windle and the Department of Materials Science and Metallurgy at the University of Cambridge for providing the multi-walled CNTs and Nanocomposites for providing the single-walled CNTs. Anson Ma would also like to thank the Croucher Foundation Scholarship and the Overseas Research Students Awards Scheme (ORSAS) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Mackley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, A.W.K., Chinesta, F., Tuladhar, T. et al. Filament stretching of carbon nanotube suspensions. Rheol Acta 47, 447–457 (2008). https://doi.org/10.1007/s00397-007-0247-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0247-y

Keywords

Navigation