Skip to main content
Log in

On the burst of branched polymer melts during inflation

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Two molten low-density polyethylene melts, shaped as plates, have been inflated into a circular cylinder during isothermal conditions. Lowering the inflation rates allow the plates to be inflated into a larger volume of the cylinder before bursting. Numerical simulations of the inflations have been performed, using a time-strain separable constitutive K-BKZ equation based on the potential function from the Doi–Edwards theory. The material parameters in the constitutive model are based on liner viscoelastic and time dependent uniaxial elongational viscosities. The numerical calculations show quantitative agreement with the experiments, including the appearance of the burst, for a wide range of experimental conditions. This strongly suggests that the initiation of the burst in the polymer melts is a hydrodynamic phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bach A, Almdal K, Rasmussen HK, Hassager O (2003a) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179

    Article  CAS  Google Scholar 

  • Bach A, Rasmussen HK, Hassager O (2003b) Extensional viscosity for polymer melts measured in the filament stretching rheometer. J Rheol 47:429–441

    Article  CAS  Google Scholar 

  • Bach A, Rasmussen HK, Longin P-Y, Hassager O (2002) Growth of non axisymmetric disturbances of the free surface in the filament stretching rheometer: experiments and simulation. J Non-Newton Fluid Mech 108:163–186

    Article  CAS  Google Scholar 

  • Bastian H (2001) Non-linear viscoelasticity of linear and long-chain-branched polymer melts in shear and extensional flows. PhD Thesis, Institut fuĺr Kunststofftechnologie der Universität Stuttgart.

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  • Currie PK (1982) Constitutive equations for polymer melts predicted by the Doi–Edwards and Curtiss-Bird kinetic theory models. J Non-Newton Fluid Mech 11:53–68

    Article  CAS  Google Scholar 

  • Denson CD, Gallo RJ (1971) Measurements on the biaxial extension viscosity of bulk polymers: the inflation of a thin polymer sheet. Polym Eng Sci 11:174–176

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems, III, the constitutive equation. J Chem Soc Faraday Trans 74:1818–1832

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1979) Dynamics of concentrated polymer systems, IV, Rheological properties. J Chem Soc Faraday Trans 75:38–54

    Article  CAS  Google Scholar 

  • Eriksson T, Rasmussen HK (2005) The effects of polymer melt rheology on the replication of surface microstructures in iso thermal moulding. J Non-Newton Fluid Mech 127:191–200

    CAS  Google Scholar 

  • Flory PJ (1976) Statistical thermodynamics of random networks. Proc R Soc A 351:351–380

    Article  CAS  Google Scholar 

  • Hassager O, Kristensen SB, Larsen JR, Neergaard J (1999) Inflation and Instability of a Polymeric Membrane. J Non-Newton Fluid Mech 88:185–204

    Article  CAS  Google Scholar 

  • Kamei E, Onogi S (1975) Extensional and fractural properties of monodisperse polystyrene at elevated temperatures. Appl Polym Symp 27:19–46

    CAS  Google Scholar 

  • Laun HM (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30:459–501

    Article  CAS  Google Scholar 

  • Malkin AY, Petrie CJS (1997) Some conditions for rupture of polymer liquids in extension. J Rheol 41:1–25

    Article  CAS  Google Scholar 

  • Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942

    Article  CAS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Nielsen JK, Rasmussen HK (2007) Reversed extension flow of monodisperse polystyrene. Phys Rev E (in press)

  • Nielsen JK, Rasmussen HK, Denberg M, Almdal K, Hassager O (2006) Nonlinear branch–point dynamics of multiarm polystyrene. Macromolecules 39:8844–8853 (2006)

    Article  Google Scholar 

  • Nielsen JK, Rasmussen HK, Hassager O (2007) Stress relaxation of narrow molar mass distribution polystyrene following uni-axial extension. J Rheol (in press)

  • Nordmaier E, Lanver U, Lechner MD (1990) The molecular structure of low-density polyethylene 1. long-chain branching and solution properties. Macromolecules 23:1072–1076.

    Article  Google Scholar 

  • Olley P, Wagner MH (2006) A modification of the convective constraint release mechanism in the molecular stress function model giving enhanced vortex growth. J Non-Newton Fluid Mech 135:68–81

    Article  CAS  Google Scholar 

  • Raible T, Demarmels A, Meissner J (1979) Stress and recovery maxima in LDPE melt elongation. Polym Bull 1:397–402

    Article  CAS  Google Scholar 

  • Rasmussen HK (1999) Time-dependent finite-element method for the simulation of three-dimensional viscoelastic flow with integral models. J Non-Newton Fluid Mech 84:217–232

    Article  CAS  Google Scholar 

  • Rasmussen HK (2000) Lagrangian viscoelastic flow computations using Rivlin–Sawyers constitutive model. J Non-Newton Fluid Mech 92:227–243

    Article  CAS  Google Scholar 

  • Rasmussen HK (2002) Lagrangian viscoelastic flow computations using a generalized molecular stress function model. J Non-Newton Fluid Mech 106:107–120

    Article  CAS  Google Scholar 

  • Rasmussen HK, Bach A (2005) On the bursting of linear polymer melts in inflation processes. Rheol Acta 44:435–445

    Article  CAS  Google Scholar 

  • Rasmussen HK, Christensen JH, Gøttsche S (2000) Inflation of polymer melts into elliptic and circular cylinders. J Non-Newton Fluid Mech 93:245–263

    Article  CAS  Google Scholar 

  • Rasmussen HK, Eriksson T (2007) Gas displacement of polymer melts in a cylinder: experiments and viscoelastic simulations. J Non-Newton Fluid Mech 143:1–9

    Article  CAS  Google Scholar 

  • Rasmussen HK, Laille P, Yu K (2007) Large amplitude oscillatory elongation flow. Rheol Acta (in press)

  • Rasmussen HK, Nielsen JK, Bach A, Hassager O (2005) Viscosity overshoot in the start-up of uniaxial elongation of low density polyethylene melts. J Rheol 49:369–381

    Article  CAS  Google Scholar 

  • Rolon-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340

    Article  CAS  Google Scholar 

  • Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382

    Article  CAS  Google Scholar 

  • Wagner MH (1978) A constitutive analysis of uniaxial elongational flow data of a low-density polyethylene melt. J Non-Newton Fluid Mech 4:39–55

    Article  CAS  Google Scholar 

  • Wagner MH, Bastian H, Hachmann P, Meissner J, Münstedt H, Kurzbeck S, Langouche F (2000) The strain hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows. Rheol Acta 39:97–109

    Article  CAS  Google Scholar 

  • Wagner MH, Ehrecke P, Hachmann P, Meissner J (1998) A constitutive analysis of uniaxial, equibiaxial and planar extension of a commercial linear high-density polyethylene melt. J Rheol 42:621–638

    Article  CAS  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412

    Article  CAS  Google Scholar 

  • Wagner MH, Schaeffer J (1994) Assessment of nonlinear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from The Danish Research Council for Technology and Production Sciences to the Danish Polymer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Koblitz Rasmussen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rasmussen, H.K., Yu, K. On the burst of branched polymer melts during inflation. Rheol Acta 47, 149–157 (2008). https://doi.org/10.1007/s00397-007-0222-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0222-7

Keywords

Navigation