Skip to main content

Advertisement

Log in

A molecular dynamics study of the stress–optical behavior of a linear short-chain polyethylene melt under shear

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

In this study, we present details of the stress–optical behavior of a linear polyethylene melt under shear using a realistic potential model. We demonstrate the existence of the critical shear stress, above which the stress–optical rule (SOR) begins to be invalid. The critical shear stress of the SOR of this melt turns out to be 5.5 MPa, which is fairly higher than 3.2 MPa at which shear thinning starts, indicating that the SOR is valid up to a point well beyond the incipient point of shear thinning. Furthermore, contrary to conventional wisdom, the breakdown of the SOR turns out not to be correlated with the saturation of chain extension and orientation: It occurs at shear rates well before maximum chain extension is obtained. In addition to the stress and birefringence tensors, we also compare two important coarse-grained second-rank tensors, the conformation and orientation tensors. The birefringence, conformation, and orientation tensors display nonlinear relationships to each other at high values of the shear stress, and the deviation from linearity begins at approximately the critical shear stress for breakdown of the SOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon, Oxford

    Google Scholar 

  • Baig C, Edwards BJ, Keffer DJ, Cochran HD (2005) Rheological and structural studies of liquid decane, hexadecane, and tetracosane under planar elongational flow using nonequilibrium molecular dynamics simulations. J Chem Phys 122:184906

    Article  CAS  Google Scholar 

  • Baig C, Edwards BJ, Keffer DJ, Cochran HD, Harmandaris VA (2006) Rheological and structural studies of linear polyethylene melts under planar elongational flow using nonequilibrium molecular dynamics simulations. J Chem Phys 124:084902

    Article  CAS  Google Scholar 

  • Beris AN, Edwards BJ (1994) Thermodynamics of flowing systems. Oxford Univ. Press, New York

    Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol. 1: fluid mechanics (2nd edn.). Wiley, New York

    Google Scholar 

  • Bower DI (2002) An introduction to polymer physics. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Cormier RJ, Callaghan PT (2002) Molecular weight dependence of segmental alignment in a sheared polymer melt: a deuterium nuclear magnetic resonance investigation. J Chem Phys 116:10020–10029

    Article  CAS  Google Scholar 

  • Cui ST, Cummings PT, Cochran HD (1996a) Multiple time step nonequilibrium molecular dynamics simulation of the rheological properties of liquid n-decane. J Chem Phys 104:255–262

    Article  CAS  Google Scholar 

  • Cui ST, Gupta SA, Cummings PT, Cochran HD (1996b) Molecular dynamics simulations of the rheology of normal decane, hexadecane, and tetracosane. J Chem Phys 105:1214–1220

    Article  CAS  Google Scholar 

  • de Jong S, Groeneweg F, van Voorst Vader F (1991) Calculation of the refractive indices of molecular crystals. J Appl Cryst 24:171–174

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford Univ. Press, New York

    Google Scholar 

  • Evans DJ, Morriss GP (1990) Statistical mechanics of nonequilibrium liquids. Academic, New York

    Google Scholar 

  • Flory PJ (1969) Statistical mechanics of chain molecules. Wiley, New York

    Google Scholar 

  • Gao J, Weiner JH (1994) Monomer-level description of stress and birefringence relaxation in polymer melts. Macromolecules 27:1201–1209

    Article  CAS  Google Scholar 

  • Griffiths DJ (1999) Introduction to electrodynamics (3rd edn.). Prentice-Hall, New Jersey

    Google Scholar 

  • Hoover WG (1985) Canonical dynamics: equilibrium phase–space distributions. Phys Rev A 31:1695–1697

    Article  Google Scholar 

  • Inoue M, Urano K (1976) Clausius–Mossotti formula for anisotropic dielectrics. J Chem Phys 66:791–794

    Google Scholar 

  • Inoue T, Okamoto H, Osaki K (1991) Birefringence of amorphous polymers. 1. Dynamic measurement on polystyrene. Macromolecules 24:5670–5675

    Article  CAS  Google Scholar 

  • Inoue T, Mizukami Y, Okamoto H, Matsui H, Watanabe H, Kanaya T, Osaki K (1996) Dynamic birefringence of vinyl polymers. Macromolecules 29:6240–6245

    Article  CAS  Google Scholar 

  • Inoue T, Onogi T, Yao M-L, Osaki K (1999) Viscoelasticity of low molecular weight polystyrene: separation of rubbery and glassy components. J Polym Sci Polym Phys Ed 37:389–397

    Article  CAS  Google Scholar 

  • Inoue T, Onogi T, Osaki K (2000) Dynamic birefringence of oligostyrene: a symptom of “polymeric” mode. J Polym Sci Polym Phys Ed 38:954–964

    Article  CAS  Google Scholar 

  • Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin

    Google Scholar 

  • Kotaka T, Kojima A, Okamoto M (1997) Elongational flow opto-rheometry for polymer melts. 1. Construction of an elongational flow opto-rheometer and some preliminary results. Rheol Acta 36:646–656

    CAS  Google Scholar 

  • Kröger M, Loose W, Hess S (1993) Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics. J Rheol 37:1057–1079

    Article  Google Scholar 

  • Kröger M, Luap C, Muller R (1997) Polymer melts under uniaxial elongational flow: stress–optical behavior from experiments and nonequilibrium molecular dynamics computer simulations. Macromolecules 30:526–539

    Article  Google Scholar 

  • Luap C, Müller C, Schweizer T, Venerus DC (2005) Simultaneous stress and birefringence measurements during uniaxial elongation of polystyrene melts with narrow molecular weight distribution. Rheol Acta 45:83–91

    Article  CAS  Google Scholar 

  • Matsumoto T, Bogue DC (1977) Stress birefringence in amorphous polymers under nonisothermal conditions. J Polym Sci Polym Phys Ed 15:1663–1674

    Article  CAS  Google Scholar 

  • Mavrantzas VG, Theodorou DN (2000a) Atomistic simulation of the birefringence of uniaxially stretched polyethylene melts. Comput Theor Polymer Sci 10:1–13

    Article  CAS  Google Scholar 

  • Mavrantzas VG, Theodorou DN (2000b) Atomistic Monte Carlo simulation of steady-state uniaxial elongational flow of long-chain polyethylene melts: dependence of the melt degree of orientation on stress, molecular length and elongational strain rate. Macromol Theory Simul 9:500–515

    Article  CAS  Google Scholar 

  • Meissner J, Hostettler J (1994) A new elongational rheometer for polymer melts and other highly viscoelastic liquids. Rheol Acta 33:1–21

    Article  CAS  Google Scholar 

  • Moore JD, Cui ST, Cochran HD, Cummings PT (2000) A molecular dynamics study of a short-chain polyethylene melt. I. Steady-state shear. J Non-Newton Fluid Mech 93:83–99

    Article  CAS  Google Scholar 

  • Morrison FA (2001) Understanding rheology. Oxford Univ. Press, New York

    Google Scholar 

  • Muller R, Froelich D (1985) New extensional rheometer for elongational viscosity and flow birefringence measurements: some results on polystyrene melts. Polymer 26:1477–1482

    Article  CAS  Google Scholar 

  • Muller R, Pesce JJ (1994) Stress–optical behaviour near the Tg and melt flow-induced anisotropy in amorphous polymers. Polymer 35:734–739

    Article  CAS  Google Scholar 

  • Nosé S (1984a) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Article  Google Scholar 

  • Nosé S (1984b) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519

    Article  Google Scholar 

  • Okamoto M, Kojima A, Kotaka T, Münstedt H (1998) Elongational flow birefringence of reactor-made linear low-density polyethylene. Macromolecules 31:5158–5159

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T (1996) Limitation of stress–optical rule for polymeric liquids. Macromolecules 29:7622–7623

    Article  CAS  Google Scholar 

  • Palierne J-F (2004) Rheothermodynamics of the Doi–Edwards reptation model. Phys Rev Lett 93:136001

    Article  CAS  Google Scholar 

  • Siepmann JI, Karaborni S, Smit B (1993) Simulating the critical behavior of complex fluids. Nature 365:330–332

    Article  CAS  Google Scholar 

  • Treloar LRG (1975) The physics of rubber elasticity. Oxford Univ. Press, New York

    Google Scholar 

  • Tuckerman M, Berne BJ, Martyna GJ (1992) Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001

    Article  CAS  Google Scholar 

  • Urano K, Inoue M (1976) Clausius–Mossotti formula for anisotropic dielectrics. J Chem Phys 66:791–794

    Article  Google Scholar 

  • van Meerveld J (2004) Validity of the linear stress optical rule in mono-, bi- and polydisperse systems of entangled linear chains. J Non-Newton Fluid Mech 123:259–267

    Article  CAS  Google Scholar 

  • Venerus DC, Zhu S-H, Öttinger HC (1999) Stress and birefringence measurements during the uniaxial elongation of polystyrene melts. J Rheol 43:795–813

    Article  CAS  Google Scholar 

  • Vuks MF (1966) Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals. Opt Spectrosk 20:361–368

    Google Scholar 

Download references

Acknowledgments

This research used resources of the Center for Computational Sciences at Oak Ridge National Laboratory, through the University of Tennessee Computational Sciences Initiative. Additional support for CB was provided by the University of Tennessee Computational Sciences Initiative. ORNL is operated for the DOE by UT-Battelle, LLC, under contract number DE-AC0500OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Edwards.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baig, C., Edwards, B.J. & Keffer, D.J. A molecular dynamics study of the stress–optical behavior of a linear short-chain polyethylene melt under shear. Rheol Acta 46, 1171–1186 (2007). https://doi.org/10.1007/s00397-007-0199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0199-2

Keywords

Navigation