Skip to main content
Log in

Instability of entangled polymers in cone and plate rheometry

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Flow instability in three entangled polymer systems including a 10 wt% 1,4-polybutadiene (PBD) solution, an 11.4 wt% polyisobutylene (PIB) solution, and a long chain branched polyethylene melt (LD 146) was investigated in both stress-controlled and rate-controlled experiments in the cone–plate geometry. It was found that flow instability occurred for experiments in both rate- and stress-controlled modes. The effects of cone angle or rim gap and shearing time on flow instability were studied. The smaller cone angle and shorter shearing time delay (in terms of stress or shear rate) the occurrence of severe instability and mass loss of the PBD solution but not for the PIB. Our data are consistent with the dramatic shear rate jump for the flow curve constructed from the stress-controlled experiments being associated with mass loss after the severe instabilities. We also find that the Cox–Merz representation gives a powerful tool for investigation of flow instability. Finally, another interesting result in this work is that it seems that the stress overshoot can be related to the onset of flow instability in the present system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Al-Hadithi TSR, Barnes HA, Walters K (1992) The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems. Colloid Polym Sci 270:40–46

    Article  CAS  Google Scholar 

  • Archer LA, Sanchez-Reyes J, Juliani J (2002) Relaxation dynamics of polymer liquids in nonlinear step strain. Macromolecules 35:10216–10224

    Article  CAS  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1977) Dynamics of polymeric liquids. Willey, New York, p 154

    Google Scholar 

  • Crawley RL, Graessley WW (1977) Geometry effects on stress transient data obtained by cone and plate flow. Trans Soc Rheol 21:19–49

    Article  CAS  Google Scholar 

  • Cox WP, Merz EH (1958) Correlation of dynamic and steady state flow viscosities. J Polym Sci 28:619–622

    Article  CAS  Google Scholar 

  • Ferri D, Lomellini P (1999) Melt rheology of randomly branched polystyrenes. J Rheol 43:1355–1372

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Willey, New York, p 523

    Google Scholar 

  • Fukuda M, Osaki K, Kurata M (1975) Nonlinear viscoelasticity of polystyrene solutions I. J Polym Sci Polym Phys Ed 13:1563–1567

    Article  CAS  Google Scholar 

  • Gleissle W, Hoshestein B (2003) Validity of the Cox–Merz rule for concentrated suspensions. J Rheol 47:897–910

    Article  CAS  Google Scholar 

  • Graessley WW (1974) The entanglement concept in polymer rheology. Adv Polym Sci 16:1–179

    Article  Google Scholar 

  • Huilgol RR, Pinazza M, Payen LE (1993) On the rectangular flow of a second-order fluid and the role of second normal stress difference in edge fracture in rheometer. J Non-Newton Fluid Mech 50:331–348

    Article  CAS  Google Scholar 

  • Huilgol RR, Pinazza M, Payen LE (1994) Corrigenda. J Non-Newton Fluid Mech 55:209–211

    Article  Google Scholar 

  • Hutton JF (1963) Fracture of liquids in shear. Nature 200:646–648

    Article  Google Scholar 

  • Hutton JF (1965) The fracture of liquids in shear: the effects of size and shape. Proc R Soc Lond Ser A 287:222

    Article  CAS  Google Scholar 

  • Hutton JF (1969) Fracture and secondary flow of elastic liquids. Rheol Acta 8:54–59

    Article  CAS  Google Scholar 

  • Inn YW, Wissbrun KF, Denn MM (2005) Effect of edge fracture on constant torque rheometry of entangled polymer solutions. Macromolecules 38:9385–9388

    Article  CAS  Google Scholar 

  • Keentok M, Xue S-C (1999) Edge fracture in cone–plate and parallel plate flows. Rheol Acta 38:321–348

    Article  CAS  Google Scholar 

  • Kocherov VL, Lukach YL, Sporyagin EA, Vinogradov GV (1973) Flow of polymer melts in a disc-type extruder and rotational devices of the ‘cone–plate’ and ‘parallel-plate’ type. Polym Eng Sci 13:194–201

    Article  CAS  Google Scholar 

  • Kulicke WM, Porter RS (1979) Irregularities in steady flow for non-Newtonian fluids between cone and plate. J Appl Polym Sci 23:953–965

    Article  CAS  Google Scholar 

  • Kulicke WM, Porter RS (1980) Relation between steady shear flow and dynamic rheology. Rheol Acta 19:601–605

    Article  CAS  Google Scholar 

  • Kulicke WM, Wallbaum U (1985) Determination of first and second normal stress differences in polymer solutions in steady shear flow and limitations caused by flow irregularities. Chem Eng Sci 40:961–972

    Article  CAS  Google Scholar 

  • Kulicke WM, Jeberien HE, Kiss H, Porter RS (1979) Visual observation of flow irregularities in polymer solutions at theta-conditions. Rheol Acta 18:711–716

    Article  CAS  Google Scholar 

  • Larson RG (1992) Instabilities in viscoelastic flows. Rheol Acta 31:213–263

    Article  CAS  Google Scholar 

  • Larson RG, Khan SA, Raju VR (1988) Relaxation of stress and birefringence in polymers of high molecular weight. J Rheol 32:145–161

    Article  CAS  Google Scholar 

  • Lee CS, Tripp BC, Magda JJ (1992) Does N 1 or N 2 control the onset of edge fracture. Rheol Acta 31:306–308

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology: principles, measurements, and applications. VCH, New York

    Google Scholar 

  • Magda JJ, Larson RG (1988) A transition occurring in ideal elastic liquids during shear-flow. J Non-Newton Fluid Mech 30:1–19

    Article  CAS  Google Scholar 

  • Marrucci G (1983) The free energy function of the Doi and Edwards theory: analysis of the instability in stress relaxation. J Rheol 27:433–450

    Article  CAS  Google Scholar 

  • Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox–Merz rule. J Non-Newton Fluid Mech 62:279–289

    Article  CAS  Google Scholar 

  • McKinley GH, Byars JA, Brown RA, Armstrong RC (1991) Observations in elastic instability in cone–plate and parallel-plate flows of polyisobutylene Boger fluid. J Non-Newton Fluid Mech 40:201–229

    Article  CAS  Google Scholar 

  • McKinley GH, Oztekin A, Byars JA, Brown RA (1995) Self-similar spiral instabilities in elastic flows between a cone and plate. J Fluid Mech 285:123–164

    Article  CAS  Google Scholar 

  • Mead DW, Larson RG (1990) Rheooptical study of isotropic solutions of stiff polymers. Macromolecules 23:2524–2533

    Article  CAS  Google Scholar 

  • Menezes EV, Graessley WW (1982) Non-linear rheological behavior of polymer systems for several shear-flow histories. J Polym Sci Polym Phys Ed 20:1817–1833

    Article  CAS  Google Scholar 

  • Mhetar V, Archer LA (1999) Nonlinear viscoelasticity of entangled polymeric liquids. J Non-Newton Fluid Mech 81:71–81

    Article  CAS  Google Scholar 

  • Olagunju DO, Cook LP (1993) Linear stability analysis of cone-and-plate flow of an oldroyd-B fluid. J Non-Newton Fluid Mech 47:93–105

    Article  CAS  Google Scholar 

  • Osaki K, Fukuda M, Ohta S, Kim BS, Kurata M (1975) Nonlinear viscoelasticity of polystyrene solutions. II. Non-Newtonian viscosity. J Polym Sci Polym Phys Ed 13:1577–1589

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T, Isomura T (2000a) Stress overshoot of polymers at high rates of shear. J Polym Sci Polym Phys Ed 38:1917–1925

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T, Isomura T (2000b) Stress overshoot of polymers at high rates of shear: polystyrene with bimodal molecular weigh distribution. J Polym Sci Polym Phys Ed 38:2043–2050

    Article  CAS  Google Scholar 

  • Osaki K, Inoue T, Uematsu T (2000c) Stress overshoot of polymers at high rates of shear: semidilute polystyrene solutions with and without chain entanglement. J Polym Sci Polym Phys Ed 38:3271–3276

    Article  CAS  Google Scholar 

  • Pattamaprom C, Larson RG (2001) Constraint release effects in monodiesperse and bidisperse polystyrenes in fast transient shearing flows. Macromolecules 34:5229–5237

    Article  CAS  Google Scholar 

  • Pearson DS, Rochefort WE (1982) Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J Polym Sci Polym Phys Ed 20:83–98

    Article  CAS  Google Scholar 

  • Pearson DS, Herbolzheimer E, Grizzuti N, Marrucci G (1991) Transient behavior of entangled polymers at high shear rates. J Polym Sci B Polym Pyhs Ed 29:1589–1597

    Article  CAS  Google Scholar 

  • Phan-Thien N (1985) Cone and plate flow of Oidroyd-B fluid is unstable. J Non-Newton Fluid Mech 17:37–44

    Article  Google Scholar 

  • Rosen SL (1993) Fundamental principles of polymeric materials. Wiley, New York

    Google Scholar 

  • Sanchez-Reyes J, Islam MT, Archer LA (2002) Step shear dynamics of highly entangled polymer liquids. Macromolecules 35:5194–5202

    Article  CAS  Google Scholar 

  • Sui C, McKenna GB, ANTEC 2006 (2006) Proceedings of the 64th Annual Technical Conference & Exhibition, Charlotte, NC. May 7–11. Soc Plast Eng, pp. 2351–2355

  • Sui C, McKenna GB (2007) Nonlinear viscoelastic properties of branched polyethylene in reversing flows. J Rheol (in press)

  • Tanner RI, Keentok M (1983) Shear fracture in cone–plate rheometry. J Rheol 27:47–57

    Article  Google Scholar 

  • Tapadia P, Wang S-Q (2003) Yieldlike constitutive transition in shear flow of entangled polymeric fluids. Phys Rev Lett 91:198301–198304

    Article  CAS  Google Scholar 

  • Tapadia P, Wang S-Q (2004) Nonlinear flow behavior of entangled polymer solutions: yieldlike entanglement-disentanglement transition. Macromolecules 37:9083–9095

    Article  CAS  Google Scholar 

  • Tapadia P, Wang S-Q (2006) Direct visualization of continuous simple shear in non-Newtonian polymeric fluids. Phys Rev Lett 96:016001–016004

    Article  CAS  Google Scholar 

  • Venerus DC, Ritesh N (2006) Stress relaxation dynamics of an entangled polystyrene solution following step strain flow. J Rheol 50:59–75

    Article  CAS  Google Scholar 

  • Wang S-Q, Ravindranath S, Boukany PE, Olechnowicz M, Quirk RP, Halasa A, Mays J (2006) Non-quiescent relaxation in entangled polymeric liquids after step shear. Phys Rev Lett 97:187801–187804

    Article  CAS  Google Scholar 

  • Wen YH, Lin HC, Li CH, Hua CC (2004) An experimental appraisal of the Cox–Merz rule and Laun’s rule based on bidisperse entangled polystyrene solutions. Polymer 45:8551–8559

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Thanks to the American Chemical Society–Petroleum Research Fund under Grant 40615-AC7 and the J.R. Bradford endowment at Texas Tech University for partial support of this work. The authors also thank S-Q Wang and A. Philips for highly fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. McKenna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, C., McKenna, G.B. Instability of entangled polymers in cone and plate rheometry. Rheol Acta 46, 877–888 (2007). https://doi.org/10.1007/s00397-007-0169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-007-0169-8

Keywords

Navigation