Skip to main content
Log in

Evaluation and comparison of routes to obtain pressure coefficients from high-pressure capillary rheometry data

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

A capillary rheometer equipped with a pressure chamber is used to measure the pressure-dependent viscosity of polymethylmethacrylate (PMMA), poly-α-methylstyrene-co-acrylonitrile (PαMSAN), and low-density polyethylene (LDPE). Data analysis schemes are discussed to obtain pressure coefficients at constant shear rate and at constant shear stress. It is shown that the constant shear stress pressure coefficients have the advantage of being shear stress independent for the three polymers. The constant shear rate pressure coefficients, on the other hand, turn out to depend on shear rate, which makes them less suitable for use, e.g., in process simulations. In addition to the commonly used superposition method, a direct calculation method for the pressure coefficients is tested. Values obtained from both methods are equivalent. However, the latter requires less experimental and calculational efforts. From the obtained pressure coefficients, it is clear that PMMA and PαMSAN have a very similar pressure dependence, while LDPE is less sensitive to pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barus CJ (1891) Note on the dependence of viscosity on pressure and temperature. Proc Am Acad 27:13–19

    Google Scholar 

  • Binding DM, Couch MA, Walters K (1998) The pressure dependence of the shear and elongational properties of polymer melts. J Non-Newton Fluid Mech 79:137–155

    Article  CAS  Google Scholar 

  • Carreras ES, El Kissi N, Piau JM, Toussaint F, Nigen S (2006) Pressure effects on viscosity and flow stability of polyethylene melts during extrusion. Rheol Acta 45:209–222. DOI 10.1007/s00397-005-0010-1

    Article  CAS  Google Scholar 

  • Cogswell FN (1972) Converging flow of polymer melts in extrusion dies. Polym Eng Sci 12:64–68

    Article  CAS  Google Scholar 

  • Cogswell FN, McGowan JC (1972) The effects of pressure and temperature upon the viscosities of liquids with special reference to polymeric liquids. Br Polym J 4:183–198

    CAS  Google Scholar 

  • Couch MA, Binding DM (2000) High pressure capillary rheometry of polymeric fluids. Polymer 41:6323–6334

    Article  CAS  Google Scholar 

  • Dealy JM, Wissbrun KF (1999) Melt rheology and its role in plastics processing: Theory and applications. Kluwer, Dordrecht

    Google Scholar 

  • Denn MM (1981) Pressure drop-flow rate equation for adiabatic capillary flow with a pressure- and temperature-dependent viscosity. Polym Eng Sci 21:65–68

    Article  CAS  Google Scholar 

  • Doolittle AK (1951) Studies in Newtonian flow 2. The dependence of the viscosity of liquids on free-space. J Appl Phys 22:1471–1475

    Article  CAS  Google Scholar 

  • Driscoll PD, Bogue DC (1990) Pressure effects in polymer rheology. J Appl Polym Sci 39:1755–1768

    Article  CAS  Google Scholar 

  • Duvdevani IJ, Klein I (1967) Analysis of polymer melt flow in capillaries including pressure effects. Soc Pet Eng J 23:41–45

    CAS  Google Scholar 

  • Ferry JD (1970) Viscoelastic properties of polymers, 2nd edn. Wiley, New York

    Google Scholar 

  • Fillers RW, Tschoegl NW (1977) Effect of pressure on mechanical-properties of polymers. Trans Soc Rheol 21:51–100

    Article  CAS  Google Scholar 

  • Goubert A, Vermant J, Moldenaers P, Göttfert A, Ernst B (2001) Comparison of measurement techniques for evaluating the pressure dependence of the viscosity. Appl Rheol 11:26–37

    CAS  Google Scholar 

  • Herrmann VHD, Knappe W (1969) Die temperatur-und druckinvariante Darstellung der Scherviskosität von geschmolzenem Polymethylmethacrylat. Rheol Acta 8:384–392

    Article  CAS  Google Scholar 

  • Kadijk SE, Van Den Brule BHAA (1994) On the pressure dependency of the viscosity of molten polymers. Polym Eng Sci 34:1535–1546

    Article  CAS  Google Scholar 

  • Koran F, Dealy JM (1999) A high pressure sliding plate rheometer for polymer melts. J Rheol 43:1279–1290

    Article  CAS  Google Scholar 

  • Laun HM (1983) Polymer melt rheology with a slit die. Rheol Acta 22:171–185

    Article  CAS  Google Scholar 

  • Laun HM (1998) Rheological and mechanical properties of poly(α-methylstyrene-co-acrylonitrile)/poly(methyl methacrylate) blends in miscible and phase separated regimes of various morphologies 1. Characterization of constituents, blend preparation and overview on blend morphology. Pure Appl Chem 70:1547–1566

    CAS  Google Scholar 

  • Laun HM (2003) Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheol Acta 42:295–308. DOI 10.1007/s00397-002-0291-6

    Article  CAS  Google Scholar 

  • Laun HM (2004) Capillary rheometry for polymer melts revisited. Rheol Acta 43:509–528. DOI 10.1007/s00397-004-0387-2

    Article  CAS  Google Scholar 

  • Liang JZ (2001) Pressure effect of viscosity for polymer fluids in die flow. Polymer 42:3709–3712

    Article  CAS  Google Scholar 

  • Lomellini P, Ferri D (2000) Polymer melt rheology versus shear rate or versus shear stress? Rheology 2000. In: Proceedings of the 18th international congress on rheology, August 2000, Cambridge, UK

    Google Scholar 

  • Mackley MR, Spitteler PHJ (1996) Experimental observations on the pressure-dependent polymer melt rheology of a linear low-density polyethylene using a multipass rheometer. Rheol Acta 35:202–209

    Article  CAS  Google Scholar 

  • Macosko CW (1994) Rheology: Principles, measurements and applications. Wiley-VCH, New York

    Google Scholar 

  • Maxwell B, Jung A (1957) Hydrostatic pressure effect on polymer melt viscosity. Mod Plast 35:174–182

    CAS  Google Scholar 

  • Oosterlinck F (2000) Flow of polymers under high pressure. Master thesis, Katholieke Universiteit Leuven, Belgium

  • Pantani R, Sorrentino A (2005) Pressure effect on viscosity for atactic and syndiotactic polystyrene. Polym Bull 54:365–376. DOI 10.1007/s00289-005-0397-y

    Article  CAS  Google Scholar 

  • Ramsteiner VF (1970) Abhängigkeit der Viskosität einer Polystyrolschmelze von Temperatur, hydrostatischem Druck und niedermolekularen Zusätzen. Rheol Acta 9:374–381

    Article  CAS  Google Scholar 

  • Sedlacek T, Zatloukal M, Filip P, Boldizar A, Saha P (2004) On the effect of pressure on the shear and elongational viscosities of polymer melts. Polym Eng Sci 44:1328–1337

    Article  CAS  Google Scholar 

  • Steuten JM, Arnauts JEF, Van Gurp M (1994) Dependence of polymer melt viscosity on hydrostatic pressure: results from rheological and pvt measurements, Progress and trends in rheology 4 In: Proceedings of the 4th European rheology conference, September 1994, Sevilla, Spain

  • Utracki LA (1983a) Pressure dependency of Newtonian viscosity. Polym Eng Sci 23:446–451

    Article  CAS  Google Scholar 

  • Utracki LA (1983b) Temperature and pressure dependence of liquid viscosity. Can J Chem Eng 61:753–758

    Article  CAS  Google Scholar 

  • Utracki LA (1985) A method of computation of the pressure effect on melt viscosity. Polym Eng Sci 25:655–668

    Article  CAS  Google Scholar 

  • Van Hemelrijck E (2000) Morphology development of polymeric blends in complex flow geometries. Master thesis, Katholieke Universiteit Leuven, Belgium

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Van Puyvelde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardinaels, R., Van Puyvelde, P. & Moldenaers, P. Evaluation and comparison of routes to obtain pressure coefficients from high-pressure capillary rheometry data. Rheol Acta 46, 495–505 (2007). https://doi.org/10.1007/s00397-006-0148-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-006-0148-5

Keywords

Navigation