Rheologica Acta

, Volume 44, Issue 5, pp 513–520 | Cite as

Recoil from elongation using general network models

  • Roger I. Tanner
  • Anthony M. Zdilar
  • Simin Nasseri
Original Contribution

Abstract

In this paper, we use two new models and the irreversible KBKZ model of Wagner (Rheol Acta 18:681–692, 1979) to describe the famous experiments of Meissner (Rheol Acta 10:230–242, 1971) on the recoil of polyethylene. The new models are based both on network and reptation-type ideas. One of the new models (PTT-X) is a member of the PTT family and shows good agreement with polyethylene data in shearing, elongation, and recoil from elongation.

Keywords

Polyethylene Recoil PTT model Elongation rheology 

References

  1. Blackwell RJ, McLeish TCB, Harlen OG (2000) Molecular drag-strain coupling in branched polymer melts. J Rheol 44:121–136CrossRefGoogle Scholar
  2. Chodankar CD, Schieber JD, Venerus DC (2003) Pom-pom theory evaluation in double-step strain flows. J Rheol 47:413–428CrossRefGoogle Scholar
  3. Giesekus H (1982) A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensional mobility. J Non-Newton Fluid Mech11:69–109CrossRefGoogle Scholar
  4. Huilgol RR, Phan-Thien N (1997) Fluid mechanics of viscoelasticity. Elsevier, AmsterdamGoogle Scholar
  5. Joshi YM, Denn MM (2004) Failure and recovery of entangled polymer melts in elongational flow. Rheol Rev 2:1–17Google Scholar
  6. Langouche F, Debbaut B (1999) Rheological characterisation of a high-density polyethylene with a multi-mode differential viscoelastic model and numerical simulation of transient elongational recovery experiments. Rheol Acta 38:48–64CrossRefGoogle Scholar
  7. Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, BostonGoogle Scholar
  8. Laun HM (1986) Prediction of elastic strains of polymer melts in shear and elongation. J Rheol 30:459–501CrossRefGoogle Scholar
  9. Lodge AS (1964) Elastic liquids. Academic, LondonGoogle Scholar
  10. Lodge AS (1989) Elastic recovery and polymer–polymer interactions. Rheol Acta 28:351–362Google Scholar
  11. Lodge AS, Evans DJ, Scully DB (1965) Delayed free recovery in a rubberlike liquid after steady shear flow. Rheol Acta 4:140–146Google Scholar
  12. Meissner J (1971) Dehnungsverhalten von Polyäthylen-Schmelzen. Rheol Acta 10:230–242Google Scholar
  13. Tanner RI (2000) Engineering rheology, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  14. Tanner RI, Nasseri S (2003) Simple constitutive models for linear and branched polymers. J Non-Newton Fluid Mech 116:1–17CrossRefGoogle Scholar
  15. Tanner RI, Tanner E (2003) Heinrich Hencky: a rheological pioneer. Rheol Acta 42:93–101CrossRefGoogle Scholar
  16. Verbeeten WH, Peters GWM, Baaijes FPT (2002) Viscoelastic analysis of complex polymer melts flows using the extended pom-pom model. J Non-Newton Fluid Mech 108:301–326CrossRefGoogle Scholar
  17. Wagner MH (1979) Elongational behaviour of polymer melts in constant elongation-rate, constant tensile stress, and constant tensile force experiments. Rheol Acta 18:681–692Google Scholar
  18. Zdilar AM, Tanner RI (1992) The recoil of rigid PVC. Rheol Acta 31:44–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Roger I. Tanner
    • 1
  • Anthony M. Zdilar
    • 1
  • Simin Nasseri
    • 1
  1. 1.School of Aerospace, Mechanical and Mechatronic EngineeringUniversity of SydneySydneyAustralia

Personalised recommendations