Rheologica Acta

, Volume 45, Issue 4, pp 435–443 | Cite as

Self-assembled nanoribbons and nanotubes in water: energetic vs entropic networks

  • Pierre Terech
  • Séverine Friol
  • Neralagatta Sangeetha
  • Yeshayahu Talmon
  • Uday Maitra
Original contribution

Abstract

We present a comparative investigation of two opposite classes of self-assembled fibrillar networks. Ribbons and tubes having cross-sectional dimensions in the nanoscale can be formed in aqueous solutions of steroids derived, respectively, from deoxycholic (DC) and lithocholic (LC) acids. Rheological features distinguish energetic networks of DC ribbons rigidly fixed in cylindrical bundles and entropic transient networks of LC tubes weakly interacting in shear-sensitive suspensions. The two classes are characterized by their frequency sweep profiles, viscoelastic linear domains, scaling laws of the elastic shear modulus vs concentration, kinetics of formation of the networks, and their optical birefringence aspects. A theoretical context for networks of rigid fibers is used to account for the scaling exponents α in the G’ (and σ*) ∝Cα laws (α=2.0 and 1.0, respectively, for DC and LC). The evolution observed in DC gels from ribbons to cylindrical fibers with monodisperse sections made up with four ribbons is an indication of an equilibrated balance between face-to-face attractions and untwisting elastic processes of the constitutive ribbons.

Keywords

Self-assembling Networks Fibers Tubes Ribbons Rheology 

References

  1. Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, Mcleish TCB, Pitkeathly, M Radford SE (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric b-sheet tapes. Nature 386:259–262CrossRefPubMedGoogle Scholar
  2. Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L, Mcleish TCB, Semenov AN, Boden N (2001) Hierarchical self-assembly of chiral rod-like molecules as a model for peptide b-sheet tapes, ribbons, fibrils, and fibers. Proc Natl Acad Sci U S A 98(21):11857–11862CrossRefPubMedGoogle Scholar
  3. Avrami M (1939) Kinetics of phase change: I. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  4. Avrami M (1940) Kinetics of phase change: II. J Chem Phys 8:212–224CrossRefGoogle Scholar
  5. Avrami M (1941) Granulation phase change and microstructure. Kinetics of phase change. III. J Chem Phys 9:177–184CrossRefGoogle Scholar
  6. Bonincontro A, D’archivio AA, Galantini L, Giglio E, Punzo F (1999) On the micellar aggregates of alkali metal salts of deoxycholic acid. J Phys Chem B 103:4986–4991CrossRefGoogle Scholar
  7. Campanelli AR, De Sanctis SC, Chiessi E, D’alagni M, Giglio E Scaramuzza L (1989) Sodium glyco- and taurodeoxycholate: possible helical models for conjugated bile salt micelles. J Phys Chem 93:1536–1542CrossRefGoogle Scholar
  8. Conte G, Di Blasi R, Giglio E, Paretta A, Pavel, NV (1984) Nuclear magnetic resonance and X-ray studies on micellar aggregates of sodium deoxycholate. J Phys Chem 88:5720–5724CrossRefGoogle Scholar
  9. Esposito G, Giglio E, Pavel NV, Zanobi A (1987) Size and shape of sodium deoxycholate micellar aggregate. J Phys Chem 91:356–362CrossRefGoogle Scholar
  10. Glatter O, Kratky O (1982) Small angle x-ray scattering. Academic, LondonGoogle Scholar
  11. Head DA, Levine AJ, Mackintosh FC (2003a) Deformation of cross-linked semiflexible polymer networks. Phys Rev Lett 91(10):108102–1/4Google Scholar
  12. Head DA, Levine AJ, Mackintosh FC (2003b) Distinct regimes of elastic response and deformation modes of cross-linked cytoskeletal and semiflexible polymer networks. Phys Rev E 68:061907–1/15Google Scholar
  13. Janmey PA, Euteneuer U, Traub P, Schliwa, M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113(1):155–160CrossRefPubMedGoogle Scholar
  14. Jean B, Oss-Ronen L, Terech P, Talmon Y (2005) Monodisperse bile salt nanotubes in water: kinetics of formation. Adv Mater 17(16):728–731CrossRefGoogle Scholar
  15. Jones JL, Marques CM (1990) Rigid polymer network models. J Phys (Paris) 51:1113–1127CrossRefGoogle Scholar
  16. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  17. Leon EJ, Verma N, Zhang S, Lauffenburger DA, Kamm RD (1998) Mechanical properties of a self-assembling oligopeptide matrix. J Biomater Sci Polym Ed 9(3):297–312PubMedCrossRefGoogle Scholar
  18. Levine AJ, Head DA, Mackintosh FC (2004) The deformation field in semiflexible networks. J Phys Condens Matter 16:S2079–S2088CrossRefGoogle Scholar
  19. Lin Y-C, Kachar B, Weiss RG (1989) Novel family of gelators of organic fluids and the structure of their gels. J Am Chem Soc 111:5542–5551CrossRefGoogle Scholar
  20. Ma L, Xu J, Coulombe PA, Wirtz D (1999) Keratin filament suspensions show unique micromechanical properties. J Biol Chem 274(27):19145–19151CrossRefPubMedGoogle Scholar
  21. Macintosh FC, Käs J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75(24):4425–4428CrossRefPubMedGoogle Scholar
  22. Mazer NA, Carey MC, Kwasnick RF, Benedek GB (1979) Quasielastic light scattering studies of aqueous biliary lipid systems. Size, shape, and thermodynamics of bile salt micelles. Biochemistry 18:3064–3075CrossRefPubMedGoogle Scholar
  23. McCrea JF, Angerer S (1960) Formation of helical strands by sodium deoxycholate as revealed by electron microscopy. Biochim Biophys Acta 42:355–357CrossRefGoogle Scholar
  24. Murata K, Aoki M, Susuki T, Harada T, Kawabata H, Komori T, Ohseto F, Ueda K, Shinkai S (1994) Thermal and light control of the sol–gel phase transition in cholesterol-based organic gels. Novel helical aggregation modes as detected by circular dichroism and electron microscopic observation. J Am Chem Soc 116:6664–6676CrossRefGoogle Scholar
  25. Nyrkova IA, Semenov AN, Aggeli A, Boden, N (2000) Fibril stability in solutions of twisted b-sheet peptides: a new kind of micellization in chiral systems. Eur Phys J B Cond Matter Phys 17:481–497CrossRefGoogle Scholar
  26. O’Connor CJ, Wallace RG (1985) Physico-chemical behavior of bile salts. Adv Colloid Interface Sci 22:1–111CrossRefGoogle Scholar
  27. Rich A, Blow DM (1958) Formation of a helical steroid complex. Nature 46(33):423–426CrossRefGoogle Scholar
  28. Sangeetha NM, Bhat S, Choudhury A, Maitra U, Terech P (2004) Properties of hydrogels derived from cationic analogues of bile acid: remarkably distinct flowing characteristics. J Phys Chem B 108:16056–16063CrossRefGoogle Scholar
  29. Schurtenberger P, Mazer N, Känzig W (1983) Static and dynamic light scattering studies of micellar growth and interactions in bile salt solutions. J Phys Chem 87:308–315CrossRefGoogle Scholar
  30. Talmon Y (1999) Cryogenic temperature transmission electron microscopy in the study of surfactant systems. In: Binks BP (ed) Modern characterization methods of surfactant systems. Marcel Dekker, New York, pp 147–178Google Scholar
  31. Terech P, Weiss RG (1997) Low molecular mass gelators of organic liquids and the properties of their gels. Chem Rev 97(8):3133–3159CrossRefPubMedGoogle Scholar
  32. Terech P, Pasquier D, Bordas V, Rossat C (2000) Rheological properties and structural correlations in molecular organogels. Langmuir 16:4485–4494CrossRefGoogle Scholar
  33. Terech P, De Geyer A, Struth B, Talmon Y (2002) Self-assembled monodisperse steroid nanotubes in water. Adv Mater 14(7):495–498CrossRefGoogle Scholar
  34. Terech P, Sangeetha NM, Deme B, Maitra U (2005) Self-assembled networks of ribbons in molecular hydrogels of cationic deoxycholic acid analogs. J Phys Chem B 109:12270–12276CrossRefGoogle Scholar
  35. Wilhelm J, Frey E (2003) Elasticity of stiff polymer networks. Phys Rev Lett 91(10):108103–108104CrossRefPubMedGoogle Scholar
  36. Xu J, Palmer A, Wirtz D (1998) Rheology and microrheology of semiflexible polymer solutions: actin filament networks. Macromolecules 31:6486–6492CrossRefGoogle Scholar
  37. Zakrzewska J, Markovic V, Vucelic D, Feigin L, Dembo A, Mogilevsky L (1990) Investigation of aggregation behavior of bile salts by small-angle X-ray scattering. J Phys Chem 94:5078–5081CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Pierre Terech
    • 1
  • Séverine Friol
    • 1
  • Neralagatta Sangeetha
    • 2
  • Yeshayahu Talmon
    • 3
  • Uday Maitra
    • 2
  1. 1.UMR 5819 (CEA-CNRS-Université Joseph Fourier), CEA-Grenoble, DRFMCGrenobleFrance
  2. 2.Department of Organic ChemistryIndian Institute of ScienceBangaloreIndia
  3. 3.Department of Chemical EngineeringTechnion-Israel Institute of TechnologyHaifaIsrael

Personalised recommendations