Skip to main content
Log in

Rheology as a tool for the analysis of the dispersion of carbon filler in polymers

  • Original contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The aim of this work is to validate the use of dynamic oscillatory measurements in the melt to characterize the dispersion of a filler in a matrix after melt blending. Polyethylene oxide (PEO) is used as a polymeric matrix. Active carbon is used as a filler at a constant filler volume content of 26.4%. The melt viscosity of the polymeric matrix is varied by melt blending of two miscible POE and polyethylene glycol (PEG) species having very different molecular weight distributions. This enables to obtain various matrix viscosities and in turn various states of dispersion of the filler that were characterized by optical microscopy and image analysis. Dynamic mechanical measurements in the melt in the terminal zone show a large increase of the moduli associated to the presence of the filler. Comparison with the results of optical microscopy shows that this increase is clearly related to the dispersion. The interparticle distance is likely to be the leading parameter rather than the number of particles. Characterization of the amount of bound polymer shows that the amount of bound polymer is nearly independent of the matrix composition. Futhermore, the composition of the bound layer reflects the matrix composition though PEO is slightly preferentially bound on the active carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Azim AA, Boutros WY, El-Sayed MA (1998) Estimation of the compatibility of poly(ethylene glycol)/poly(ethylene oxide) blends from dilute solution viscosity measurements. Polymer 39:2543–2549

    Article  CAS  Google Scholar 

  • Adams MJ, Edmondson B, Balachadran W (1987) Tribology in particulate technology. Adam Hilger, Bristol

    Google Scholar 

  • Amari T, Uesugi K, Suzuki H (1997) Viscoelastic properties of carbon black suspension as a flocculated percolation system. Prog Org Coatings 31:171–178

    Article  CAS  Google Scholar 

  • Aranguren MI, Mora E, DeGroot JV, Macosko CW (1992) Effect of reinforced fillers on the rheology of polymer melts. J Rheol 36:1165–1182

    Article  CAS  Google Scholar 

  • Bar-Chaput S, Carrot C (2005) Interactions of active carbon with low and high molecular weight polyethylene glycol and polyethylene oxide. J Appl Polym Sci (in press)

  • Dizon ES (1976) Processing in an internal mixer as affected by carbon black properties. Rubber Chem Technol 49:12–27

    CAS  Google Scholar 

  • Fekete E, Molnar S, Kim GM, Michler GH, Pukanszky B (1999) Aggregation, fracture initiation and strength of PP/CaCO3 composites. Morphology and micromechanics of polymers. J Macromol Sci Phys 38:885–899

    Article  Google Scholar 

  • Fetters LJ, Lohse DJ, Graessley WW (1999), Chain dimension and entanglement spacings in dense macromolecular systems. J Polym Sci Part B: Polym. Phys 37:1023–1033

    Article  CAS  Google Scholar 

  • Gahleitner M, Bernreitner K, Knogler B, Neissl W (1996) Rheology of hignly filled polypopylene compounds: measurement and applications. Macromol Symp 108:127–136

    CAS  Google Scholar 

  • Gandhi K, Salovey R (1988) Dynamic mechanical behavior of polymers containing carbon black. Polym Eng Sci.28:877–887

    Article  CAS  Google Scholar 

  • Horwatt SW, Manas-Zloczower I, Feke DL (1992) Dispersion behaviour of heterogenous agglomerates at supercritical stresses. Chem Eng Sci 47:1849–1855

    Article  CAS  Google Scholar 

  • Jäger KM, Eggen SS (2004) Scaling of the viscoelasticity of highly filled carbon black polyethylene composites above the melting point. Polymer 45:7681–7692

    Article  CAS  Google Scholar 

  • Kao SV, Mason SG (1975) Dispersion of particles by shear. Nature 253:619–621

    Article  CAS  Google Scholar 

  • Lin L, Masuda T (1990) Effect of dispersion of particles on viscoelasticity of CaCO3- filled polypropylene melts. Polym Eng Sci 30:841–847

    Article  Google Scholar 

  • Powell RL, Mason SG (1982) Dispersion by laminar flow. AIChE J 28:286–293

    Article  CAS  Google Scholar 

  • Pukanszky B, Fekete E (1997) Eurofillers 1997, September 7–11, Manchester

  • Pukanszky B, Fekete E (1998) Aggregation tendency of particulate fillers: determination and consequences. Polym Polym Compos 6:313–322

    CAS  Google Scholar 

  • Pukanszky B, Fekete E (1999) Adhesion and surface modification. Adv Polym Sci 139:109–153

    Article  CAS  Google Scholar 

  • Rudin A, Chee KK (1973) Zero shear viscosities of narrow and broad distribution polystyrene melts. Macromolecules 6:613–624

    Article  CAS  Google Scholar 

  • Rwei SP, Manas-Zloczower I, Feke DL (1991) Characterization of agglomerate dispersion by erosion in simple shear flows. Polym Eng Sci 31:558–562

    Article  CAS  Google Scholar 

  • Rwei SP, Manas-Zloczower I, Feke DL (1992) Analysis of dispersion of carbon black in polymeric melts and its effect on compound properties. Polym Eng Sci 32:130–135

    Article  CAS  Google Scholar 

  • Scott C, Ishida H, Maurer FHJ (1988) Interfacial effects on the melt state behavior of polyethylene-EPDM-calcium carbonate composites. Rheol Acta 27:273–278

    Article  CAS  Google Scholar 

  • Seyvet O, Navard P (2000) Collision-induced dispersion of agglomerate suspensions in a shear flow. J Appl Polym Sci 78:1130–1133

    Article  CAS  Google Scholar 

  • Seyvet O, Navard P (2001) In situ study of the dynamics of erosion of carbon black agglomerates. J Appl Polym Sci 80:1627–1629

    Article  CAS  Google Scholar 

  • Shiga S, Furuta M (1985) Processability of EPR in an internal mixer (II)— morphological changes of carbon black agglomerates during mixing. Rubber Chem Technol 58:1–22

    Google Scholar 

  • Wu G, Asai S, Sumita M, Hattori T, Higuchi R, Washiyama J (2000) Estimation of flocculation structure in filled polymer composites by dynamic rheological measurements. Colloid Polym Sci 278:220–228

    Article  CAS  Google Scholar 

  • Yurekli K, Krishnamoorti R, Tse MF, McElrath KO, Tsou AH, Wang HC (2001) Structure and dynamics of carbon black-filled elastomers. J Polym Sci Part B Polym Phys 39:256–275

    Article  CAS  Google Scholar 

  • Zhang JF, Yi XS (2002) Dynamic rheological behavior of high-density polyethylene filled with carbon black. J Appl Polym Sci 86:3527–3531

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Carrot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bar-Chaput, S., Carrot, C. Rheology as a tool for the analysis of the dispersion of carbon filler in polymers. Rheol Acta 45, 339–347 (2006). https://doi.org/10.1007/s00397-005-0045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-005-0045-3

Keywords

Navigation