Skip to main content
Log in

The role of shear and elongation in the flow of solutions of semi-flexible polymers through porous media

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological behavior of hydrophobically modified hydroxyethyl cellulose (HMHEC) and xanthan gum solutions has been characterized in simple shear flow, opposed-jets flow, and flow through porous media. Both polymers exhibit shear thinning in simple shear flow and apparent shear thinning in flow through porous media. Analysis of the results shows there is a direct correspondence between shear viscosities determined in simple shear experiments and apparent viscosities in porous media flow at relatively low shear rates. At high shear rates the extensional component of the flow in porous media appreciably increases the apparent viscosity over the simple shear values. This increase is shown to correlate with results obtained in opposed-jets experiments, and is attributed to formation of transient entanglements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Born K, Langendorff V, Boulenguer P (2001) Xanthan. In: Biopolymers, vol 5. Wiley, New York, pp 259–291

  2. Chakrabarti S, Seidl B, Vorwerk J, Brunn PO (1991) The rheology of hydroxy-propylguar (HPG) solutions and its influence on the flow through a porous medium and turbulent tube flow, respectively (part 1). Rheol Acta 30:114

    CAS  Google Scholar 

  3. Chu S, Babcock HP, Teixeira RE, Hur JS, Shaqfeh ESG (2003) Visualization of molecular fluctuations near the critical Point of the coil-stretch transition in polymer elongation. Macromolecules 36:4544

    Article  Google Scholar 

  4. Chun M-S, Park OO (1994) On the intrinsic viscosity of anionic and nonionic rodlike polysaccharide solutions. Macromol Chem Phys 195:701

    Article  CAS  Google Scholar 

  5. Dunlap PN, Leal LG (1987) Dilute polystyrene solutions in extensional flows: birefringence and flow modification. J Non Newtonian Fluid Mech 23:5

    Article  CAS  Google Scholar 

  6. Fuller GG, Leal LG (1981) Flow birefringence of concentrated polymer solutions in two-dimensional flows. J Polym Sci Polym Phys 19:557

    CAS  Google Scholar 

  7. Geffroy E, Leal LG (1992) Flow birefringence studies of a concentrated polystyrene solution in a two-roll mill. I. Steady flow and start-up of steady flow. J Polym Sci Polym Phys 30:1329

    Article  CAS  Google Scholar 

  8. Haward SJ, Odell JA (2003) Viscosity enhancement in non-Newtonian flow of dilute polymer solutions through crystallographic porous media. Rheol Acta 42:516

    Article  CAS  Google Scholar 

  9. Keller A, Odell JA (1985) The extensibility of macromolecules in solution: a new focus for macromolecular science. Colloid Polym Sci 263:181

    CAS  Google Scholar 

  10. Lesota S, Lewandowski EW, Schaller EJ (1989) Hydrophobically modified alkali-soluble emulsions as thickeners for exterior latex paints. J Coat Technol 61:135

    CAS  Google Scholar 

  11. Meister C, Dönges R, Schermann W, Schattenholz W (1992) Modified cellulose ethers and the use thereof in dispersion paints. Eur Patent 0476507

  12. Millas M, Rinaudo M (1990) Flow and viscoelastic properties of xanthan gum solutions. Macromolecules 23:2506

    Google Scholar 

  13. Moorhouse R, Walkinshaw MD, Arnott S (1977) Xanthan gum—molecular conformation and interactions. In: Sanford PA, Laskins A (eds) Extracellular microbial polysaccharides, ACS Symp Ser, No. 45. ACS, Washington, pp 90–102

    Google Scholar 

  14. Müller AJ, Sáez AE (1999) The rheology of polymer solutions in porous media. In: Nguyen TQ, Kausch HH (eds) Flexible chain dynamics in elongational flows: theory and experiments, chapter 11. Springer, Berlin

  15. Müller AJ, Medina LI, Pérez-Martín O, Rodríguez S, Romero C, Sargenti ML, Sáez AE (1993) Flowing polymers through porous media: an experimental study of flow distribution, polymer degradation and molecular weight effects. Appl Mech Rev 46:S63

    Google Scholar 

  16. Odell JA, Carrington SP (1999) Polymer solutions in strong stagnation point extensional flows. In: Nguyen TQ, Kausch HH (eds) Flexible chain dynamics in elongational flows: theory and experiments, chapter 7. Springer, Berlin

  17. Odell JA, Müller AJ, Keller A (1988) Non-Newtonian behavior of hydrolysed polyacrylamide in strong elongational flow: a transient network approach. Polymer 29:1179

    Article  CAS  Google Scholar 

  18. Patruyo LG, Müller AJ, Sáez AE (2002) Shear and extensional rheology of solutions of modified hydroxyethylcelluloses and sodium dodecyl sulfate. Polymer 43:6481

    Article  CAS  Google Scholar 

  19. Rodríguez S, Romero C, Sargenti ML, Müller AJ, Sáez AE, Odell JA (1993) Flow of polymer solutions through porous media. J Non Newtonian Fluid Mech 49:63

    Article  Google Scholar 

  20. Sáez AE, Müller AJ, Odell JA (1994) Flow of monodisperse polystyrene solutions through porous media. Colloid Polym Sci 272:1224

    Google Scholar 

  21. Shaw KG, Leipold DP (1985) New cellulosic polymers for rheology control of latex paints. J Coat Technol 57:63

    CAS  Google Scholar 

  22. Smitter LM, Guédez JF, Müller AJ, Sáez AE (2001) Interactions between poly(ethylene oxide) and sodium dodecyl sulfate in elongational flows. J Colloid Interface Sci 236:343

    Article  CAS  PubMed  Google Scholar 

  23. Sorbie KS, Huang Y (1991) Rheological and transport effects in the flow of low-concentration xanthan solution through porous media. J Colloid Interface Sci 145:74

    Article  CAS  Google Scholar 

  24. Stahl GA, Schulz DN (1988) Water-soluble polymers for petroleum recovery. Plenum, New York

    Google Scholar 

  25. Tatham JP, Carrington S, Odell JA, Gamboa AC, Müller AJ, Sáez AE (1995) Extensional behavior of hydroxypropyl guar solutions: optical rheometry in opposed jets and flow through porous media. J Rheol 39:961

    Article  CAS  Google Scholar 

  26. Yavich D, Mead DW, Oberhauser JP, Leal LG (1998) Experimental studies of an entangled polystyrene solution in steady state mixed type flows. J Rheol 42:671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank FONACIT, Venezuela, for the financial support for this work through Conipet project 97–003590.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro J. Müller or A. Eduardo Sáez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González, J.M., Müller, A.J., Torres, M.F. et al. The role of shear and elongation in the flow of solutions of semi-flexible polymers through porous media. Rheol Acta 44, 396–405 (2005). https://doi.org/10.1007/s00397-004-0421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0421-4

Keywords

Navigation