Skip to main content
Log in

Towards a rheological classification of flow induced crystallization experiments of polymer melts

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Departing from molecular based rheology and rubber theory, four different flow regimes are identified associated to (1) the equilibrium configuration of the chains, (2) orientation of the contour path, (3) stretching of the contour path, and (4) rotational isomerization and a deviation from the Gaussian configuration of the polymer chain under strong stretching conditions. The influence of the ordering of the polymer chains on the enhanced point nucleation, from which spherulites grow, and on fibrous nucleation, from which the shish-kebab structure develops, is discussed in terms of kinetic and thermodynamic processes. The transitions between the different flow regimes, and the associated physical processes governing the flow induced crystallization process, are defined by Deborah numbers based on the reptation and stretching time of the chain, respectively, as well as a critical chain stretch. An evaluation of flow induced crystallization experiments reported in the literature performed in shear, uniaxial and planar elongational flows quantitatively illustrates that the transition from an enhanced nucleation rate of spherulites towards the development of the shish-kebab structure correlates with the transition from the orientation of the chain segments to the rotational isomerization of the high molecular weight chains in the melt. For one particular case this correlation is quantified by coupling the wide angle X-ray diffraction and birefringence measurements of the crystallization process to numerical simulations of the chain stretch of the high molecular weight chains using the extended Pom-Pom model in a cross-slot flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abe Y, Flory PJ (1970) Rotational isomerization of polymer chains by stretching. J Chem Phys 42:2814–2820

    Article  Google Scholar 

  • Acierno S, Palomba B, Winter HH, Grizzuti N (2003) Effect of molecular weight on the flow-induced crystallization of isotactic poly(1-butene). Rheol Acta 42:243–250

    CAS  Google Scholar 

  • Aguilar M, Vega JF, Peña B, Marínez-Salazar J (2003) Novel features of the rheological behavior of metallocene catalyzed atactic polypropylene. Polymer 44:1401–1407

    Article  CAS  Google Scholar 

  • Astarita G (1979) Objective and generally applicable criteria for flow classification. J Non-Newtonian Fluid Mech 6:69–76

    Google Scholar 

  • Berger L, Meissner J (1992) Linear viscoelasticity, simple and planar melt extension of linear polybutadienes with bimodal molar mass distributions. Rheol Acta 31:63–74

    CAS  Google Scholar 

  • Blundell DJ, Oldman RJ, Fuller W, Mahendrasingam A, Martin C, MacKerron DH, Harvie JL, Riekel C (1999) Orientation and crystallisation mechanisms during fast drawing of poly(ethylene terephthalate). Polym Bull 42:357–363

    Article  CAS  Google Scholar 

  • Brochard-Wyart F, de Gennes PG (1988) Sègrègration par traction dans un homopolymere. C R Acad Sci Paris II 306:699–702

    CAS  Google Scholar 

  • Bushman AC, McHugh AJ (1996) A continuum model for the dynamics of flow-induced crystallization. J Polym Sci B Polym Phys 34:2393–2407

    Article  CAS  Google Scholar 

  • Cail JI, Stepto RFT, Taylor DJR, Jones RA, Ward IM (2000) Further computer simulation studies of the orientational behavior of poly(ethylene terephthalate) chains. Phys Chem Chem Phys 2:4361–4367

    Article  Google Scholar 

  • Coppola S, Grizzuti N, Maffettone PL (2001) Microrheological modeling of flow-induced crystallization. Macromolecules 34:5030–5036

    Article  CAS  Google Scholar 

  • de Gennes PG (1982) Kinetic of diffusion-controlled processes in dense polymer systems. II. Effect of entanglements. J Chem Phys 76:3322-3326

    Article  CAS  Google Scholar 

  • Debenedetti PG (1996) Metastable liquids. Princeton University Press, Princeton

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Claredon Press, Oxford

  • Dressler M (2000) The dynamical theory of non-isothermal polymeric materials. PhD thesis, ETH Zürich, Switzerland

  • Dukovski I, Muthukumar M (2003) Langevin dynamics simulations of early stage shish-kebab crystallization in extensional flow. J Chem Phys 118:6648–6655

    Article  CAS  Google Scholar 

  • Eder G, Janeschitz-Kriegl H (1997) In: Meijer HEH (ed) Crystallization. Mater Sci Technol 18:269–342

    CAS  Google Scholar 

  • Eder G, Janeschitz-Kriegl H, Liedauer S, Schausberger A, Stadlbauer W, Schindlauer G (1989) The influence of molar mass distribution on the complex moduli of polymer melts. J Rheol 33:805–820

    Article  CAS  Google Scholar 

  • Elmoumni A, Winter HH, Waddon AJ, Fruitwala, H (2003) Correlation of material and processing time scales with structure development in isotactic polypropylene crystallization. Macromolecules 36:6453–6461

    Article  CAS  Google Scholar 

  • Fang J, Kröger M, Öttinger HC (2000) A thermodynamically admissible reptation model for fast flow of entangled polymer. II. Model predictions for shear and extensional flows. J Rheol 44:1293–1317

    Article  CAS  Google Scholar 

  • Flory PJ (1947) Thermodynamics of crystallization in high polymers. J Chem Phys 15:397–408

    CAS  Google Scholar 

  • Flory PJ (1989) Statistical mechanics of chain molecules. Hanser Publisher, Münich

  • Gabriel C, Mündstedt H (2002) Influence of long-chain branches in polyethylenes on linear viscoelastic flow properties in shear. Rheol Acta 41:232–244

    Article  CAS  Google Scholar 

  • Gorlier E, Haudin JM, Billon N (2001) Strain-induced crystallization in bulk amorphous PET under uni-axial loading. Polymer 42:9541–9549

    Article  CAS  Google Scholar 

  • Graham RS, McLeish TCB, Harlen OG (2001) Using the Pom-Pom equations to analyze polymer melts in exponential shear. J Rheol 45:275–290

    Article  CAS  Google Scholar 

  • Gunton JD (1999) Homogeneous nucleation. J Stat Phys 95:903–923

    Article  Google Scholar 

  • Haward RN (1993) Strain hardening of thermoplastics. Macromolecules 26:5860–5869

    CAS  Google Scholar 

  • Hepperle J (2002) Einfluss der molekularen Struktur auf rheologische Eigenschaften von polystyrol-und polycarbonatschmelzen. Ph.D thesis, Universität Erlangen-Nürnberg

  • Ianniruberto G, Marrucci G (1996) On compatibility of the Cox-Merz rule with the model of Doi and Edwards. J Non-Newtonian Fluid Mech 65:241–246

    Google Scholar 

  • Imai M, Mori K, Mizukami T, Kaji K, Kanaya T (1992) Structural formation of poly(ethylene terephthalate) during the induction period of crystallization. 1. Ordering structure appearing before crystal nucleation. Polymer 33:4451–4462

    Article  CAS  Google Scholar 

  • Imai M, Kaji K, Kanaya T (1993) Orientation fluctuations of poly(ethylene terephthalate) during the induction period of crystallization. Phys Rev Lett 71:4162–4165

    Google Scholar 

  • Imai M, Kaji K, Kanaya T, Sakai Y (1995) Ordering process in the induction period of crystallization of poly(ethylene terephthalate). Phys Rev B 52:12696–12704

    Article  CAS  Google Scholar 

  • Islam MT, Archer LA (2001) Nonlinear rheology of highly entangled polymer solution in start-up and steady shear flow. J Polym Sci B Pol Phys 39:2275–2289

    Article  CAS  Google Scholar 

  • Islam MT, Sanchez-Reyes J, Archer LA (2003) Step and steady shear responses of nearly monodisperse highly entangled 1,4-polybutadiene solutions. Rheol Acta 42:191–198

    CAS  Google Scholar 

  • Janeschitz-Kriegl H, Ratajski E, Wippel H (1999) The physics of athermal nuclei in polymer crystallization. Colloid Polym Sci 277:217–226

    CAS  Google Scholar 

  • Janeschitz-Kriegl H, Wippel H, Lin JP, Lipp M (2001) On the kinetics of polymer crystallization in opposite-nozzle flow. Rheol Acta 40:248–255

    Article  CAS  Google Scholar 

  • Janeschitz-Kriegl H, Ratajski E, Stadlbauer M (2003) Flow as an effective promoter of nucleation in polymer melts: a quantitative evaluation. Rheol Acta 42:355–364

    Article  CAS  Google Scholar 

  • Jerschow P, Janeschitz-Kriegl H (1996) On the development of oblong particles as precursors for polymer crystallization from shear flow: origin of the so-called fine grained layers. Rheol Acta 35:127–133

    CAS  Google Scholar 

  • Jerschow P, Janeschitz-Kriegl H (1997) The role of long molecules and nucleation agent in shear induced crystallization of isotactic polypropylenes. Int Polym Proc 12:72–77

    CAS  Google Scholar 

  • Joo YL, Sun J, Smith MD, Armstrong RC, Brown RA, Ross RA (2002) Two-dimensional numerical analysis of non-isothermal melt spinning with and without phase transition. J Non-Newtonian Fluid Mech 102:37–70

    Google Scholar 

  • Keller A, Kolnaar HWH (1997) In: Meijer HEH (ed) Flow induced orientation and structure formation. Mater Sci Technol 18:189–268

    CAS  Google Scholar 

  • Ketzmerick R, Öttinger HC (1989) Simulation of a non-Markovian process modelling contour length fluctuation in the Doi-Edwards model. Continuum Mech Thermodyn 1:113–124

    CAS  Google Scholar 

  • Khalatur PG, Khokhlov AR, Mologin DA (1998) Simulation of self-associating polymer systems. I. Shear induced structural changes. J Chem Phys 109:9602–9613

    Article  CAS  Google Scholar 

  • Kornfield JA, Kumaraswamy G, Issaian AM (2003) Recent advances in understanding flow effects on polymer crystallization. Ind Eng Chem Res 41:6383–6392

    Article  Google Scholar 

  • Koscher E, Fulchiron R (2002) Influence of shear on polypropylene crystallization: morphology development and kinetics. Polymer 43:6931–6942

    Article  Google Scholar 

  • Kraft M, Meissner J, Kaschta J (1999) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromolecules 32:751–757

    Article  CAS  Google Scholar 

  • Kulkarni JA, Beris AN (1998) A model for the necking phenomenon in high-speed fiber spinning based on flow-induced crystallization. J Rheol 42:971–994

    Article  CAS  Google Scholar 

  • Kumaraswamy G, Verma RK, Issaian AM, Wang P, Kornfield JA, Yeh F, Bhsiao BS, Olley RH (2000) Shear-enhanced crystallization in isotactic polypropylene. Part 2. Analysis of the formation of the oriented skin. Polymer 41:8931–8940

    Article  CAS  Google Scholar 

  • Kumaraswamy G, Kornfield JA, Yeh F, Hsiao BS (2002) Shear-enhanced crystallization in isotactic polypropylene. Part 3. Evidence for a kinetic pathway to nucleation. Macromolecules 35:1762–1769

    Article  CAS  Google Scholar 

  • Lagasse RR, Maxwell B (1976) An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci 1:189–199

    Google Scholar 

  • Larson RG (1988) Constitutive equations for polymer melts and solutions. Butterworths, Boston

  • Larson RG, Sridhar T, Leal LG, McKinley GH, Likhtman AE, McLeish TCB (2003) Definitions of entanglement spacing and time constant in the tube model. J Rheol 47:809–818

    Article  CAS  Google Scholar 

  • Lavine MS, Waheed N, Rutledge GC (2003) Molecular dynamics simulation of orientation and crystallization of polyethylene during uniaxial extension. Polymer 44:1771–1779

    Article  CAS  Google Scholar 

  • Li L, de Jeu WH (2003) Shear-induced smectic ordering as a precursor of crystallization in isotactic polypropylene. Macromolecules 36:4862–4867

    Article  CAS  Google Scholar 

  • Liedauer S, Eder G, Janeschitz-Kriegl H, Jerschow P, Geymayer W, Ingolic E (1993) On the kinetics of shear induced crystallization in polypropylene. Int Polym Proc 8:236–244

    CAS  Google Scholar 

  • Mackley MR, Keller A (1973) Flow induced crystallization of polyethylene melts. Polymer 14:16–20

    Article  CAS  Google Scholar 

  • Macosko CW (1996) Rheology. Principles, measurements and applications. VCH Publishers, Weinheim

  • Marco Y, Chevalier L, Chaouche M (2002a) WAXD study of induced crystallization and orientation in poly(ethylene terephthalate) during biaxial elongation. Polymer 43:6569–6574

    Article  CAS  Google Scholar 

  • Marco Y, Chevalier L, Regnier G, Poitou A (2002b) Induced crystallization and orientation of poly(ethylene terephthalate) during uniaxial and biaxial elongation. Macromol Symp 185:15–34

    Article  CAS  Google Scholar 

  • Marrucci G (1996) Dynamics of entanglements: a nonlinear model consistent with the Cox-Merz rule. J Non-Newtonian Fluid Mech 62:279–289

    Google Scholar 

  • Mavrantzas VG, Theodorou DN (1998) Atomistic simulation of polymer melt elasticity: calculation of the free energy of an oriented polymer melt. Macromolecules 31:6310–6332

    Article  CAS  Google Scholar 

  • McHugh AJ, Guy RK, Tree DA (1993) Extensional flow-induced crystallization of a melt. Colloid Polym Sci 271:629–645

    CAS  Google Scholar 

  • McLeish TCB (2002) Tube theory of entangled polymer dynamics. Adv Phys 51:1379–1527

    Article  CAS  Google Scholar 

  • Mead DW, Leal LG (1995) The reptation model with segmental stretch. I. Basic equations and general properties. Rheol Acta 34:339–359

    CAS  Google Scholar 

  • Mead DW, Larson RG, Doi M (1998) A molecular theory for fast flows of entangled polymers. Macromolecules 31:7895–7914

    Article  CAS  Google Scholar 

  • Middleton AC, Duckett RA, Ward IM, Mahendrasingam A, Martin C (2001) Real-time FTIR and WAXS studies of drawing behavior of poly(ethylene terephthalate). J Appl Polym Sci 79:1825–1837

    Article  CAS  Google Scholar 

  • Milner ST (1996) Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts. J Rheol 40:303–315

    Article  CAS  Google Scholar 

  • Muller R, Picot C (1992) Chain conformation in polymer melts during flow as measured by small-angle neutron scattering. Makromol Chem M Symp 56:107–115

    CAS  Google Scholar 

  • Muller R, Pesce JJ, Picot C (1993) Chain conformation in sheared polymer melts as revealed by SANS. Macromolecules 26:4356–4365

    CAS  Google Scholar 

  • Murakami S, Senoo K, Toki S, Kohjiya S (2002) Stuctural development of natural rubber during uniaxial stretching by in situ wide angle X-ray diffraction using a synchrotron radiation. Polymer 42:2117–2120

    Article  Google Scholar 

  • Niehand JY, Lee LJ (1998) Hot plate welding of polypropylene. Part I. Crystallization kinetics. Polym Eng Sci 38:1121–1132

    Article  Google Scholar 

  • Nogales A, Hsiao BS, Somani RHM, Srinivas S, Tsou AH, Balta-Calleja FJ, Eqyuerra TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distribution: in situ small- and wide-angle X-ray studies. Polymer 42:5247–5256

    Article  CAS  Google Scholar 

  • Oberhauser JP, Leal LG, Mead DW (1996) The response of entangled polymer solution to step changes of shear rate: signatures of segmental stretch? J Polym Sci B Polym Phys 36:265–280

    Article  Google Scholar 

  • Oxtoby DW (1992) Homogeneous nucleation: theory and experiments. J Phys Condens Matter 4:7627–7650

    Article  Google Scholar 

  • Pattamaprom C, Larson RG (2001) Predicting the linear viscoelastic properties of monodisperse and polydisperse polystyrenes and polyethylenes. Rheol Acta 40:516–532

    Article  CAS  Google Scholar 

  • Pattamoprom C, Larson RG, Van Dyke TJ (2000) Quantitative predictions of linear viscoelastic rheological properties of entangled polymers. Rheol Acta 39:517–531

    Article  Google Scholar 

  • Peters GWM, Swartjes FHM, Meijer HEH (2002) A recoverable strain based model for flow-induced crystallization. Macromol Symp 185:277–292

    Article  CAS  Google Scholar 

  • Pogodina NV, Winter HH (1998) Polypropylene crystallization as a physical gelation process. Macromolecules 31:8164–8172

    Article  CAS  Google Scholar 

  • Pogodina NV, Winter HH, Srinivas S (1999) Strain effect on physical gelation of crystallizing isotactic polypropylene. J Polym Sci B Polym Phys 37:3512–3519

    Article  CAS  Google Scholar 

  • Pogodina NV, Larenko VP, Srinivas S, Winter HH (2001) Rheology and structure of isotactic polypropylene near the gel point: quiescent and shear-induced crystallization. Polymer 42:9031–9043

    Article  CAS  Google Scholar 

  • Power D, Larson I, Hartley P, Dunstain D, Boger DV (1998) Atomic force microscopy studies on hydroxypropylguar gels formed under shear. Macromolecules 31:8744–8748

    Article  CAS  Google Scholar 

  • Salem DR (1992a) Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: influence of strain rate. Polymer 33:3182–3188

    Article  CAS  Google Scholar 

  • Salem DR (1992b) Development of crystalline order during hot-drawing of poly(ethylene terephthalate) film: strain-rate draw time superposition. Polymer 33:3189–3192

    Article  CAS  Google Scholar 

  • Salem DR (1998) Growth shape observed in two-dimensional poly(ethylene terephthalate) spherulites. Polymer 39:7067–7077

    Article  CAS  Google Scholar 

  • Schoonen J (1998) Determination of rheological constitutive equations using complex flows. Ph.D thesis, University of Technology Eindhoven, the Netherlands

  • Schwittay C, Mours M, Winter HH (1995) Rheological expression of physical gelation in polymers. Faraday Discuss 101:93–104

    Article  CAS  Google Scholar 

  • Seki M, Thurman D, Oberhauser J, Kornfield JA (2002) Shear-mediated crystallization of isotactic polypropylene: the role of long chain-long chain overlap. Macromolecules 35:2583–2594

    Article  CAS  Google Scholar 

  • Somani RH, Hsiao BS, Nogales A, Srinivas S, Tsou AH, Sics I, Balta-Calleja FJ, Ezquerra TA (2000) Structure development during shear flow-induced crystallization of i-PP: in situ small angle X-ray diffraction study. Macromolecules 33:9385–9394

    Article  CAS  Google Scholar 

  • Somani RH, Hsiao BS, Nogales A, Fruitwala H, Srinivas S, Tsou AH (2001) Structure development during shear flow-induced crystallization of i-PP: in situ wide angle X-ray diffraction study. Macromolecules 34:5902–5909

    Article  CAS  Google Scholar 

  • Stadlbauer M (2001) Rheo-kinetics of polymers in extension: rheometry, rheology, and structure development. PhD thesis, University of Linz, Austria

  • Strobl G (1997) The physics of polymers. Springer, Berlin Heidelberg New York

  • Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643

    CAS  Google Scholar 

  • Suneel, Graham RS, McLeish TCB (2003) Characterization of an industrial polymer melt through either uniaxial extension or exponential shear data: an application of the Pom-Pom model. Appl Rheol 13:19–25

    CAS  Google Scholar 

  • Swartjes FHM (2001) Stress induced crystallization in elongational flow. PhD thesis, University of Technology Eindhoven, the Netherlands

  • Swartjes FHM, Peters GWM, Rastogi S, Meijer HEH (2003) Stress induced crystallization in elongational flow. Int Polym Proc 18:53–66

    CAS  Google Scholar 

  • Taylor DJR, Stepto RFT, Bleackley M Ward IM (1999) A theoretical study of the conformational and orientational properties of poly(ethylene terephthalate) chains. Phys Chem Chem Phys 1:2065–2070

    Article  Google Scholar 

  • Toki S, Fujimaki T, Okuyama M (2000) Strain-induced crystallization of natural rubbers as detected real-time by wide angle X-ray diffraction technique. Polymer 41:5423–5429

    Article  CAS  Google Scholar 

  • Toki S, Sics, I, Ran S, Liu L, Hsiao BS, Murakami S, Senoo K, Kohjiya S (2002) New insights into structural development of natural rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules 35:6578–6584

    Article  CAS  Google Scholar 

  • Treloar LRG (1975) The physics of rubber elasticity. Claredon Press, Oxford

  • van Krevelen DW (1978) Crystallinity of polymers and the means to influence the crystallization process. Chimia 32:279–294

    Google Scholar 

  • van Meerveld J (2004a) Molecular based description of bidisperse system of entangled linear chains (preprint)

  • van Meerveld J (2004b) A method to extract the monomer friction coefficient from the linear viscoelastic behavior of linear, entangled polymer melts. Rheol Acta (in press)

  • Vega JF, Aguilar M, Marínez-Salazar J (2003) Model linear metallocene-catalyzed polyolefins: melt rheological behavior and molecular dynamics. J Rheol 47:1505–1521

    Article  CAS  Google Scholar 

  • Verbeeten WHM (2001) Computational polymer melt rheology. PhD thesis, University of Technology Eindhoven, the Netherlands

  • Verbeeten WHM, Peters GWM, Baaijens FPT (2001) Differential constitutive equations for polymer melts: the extended Pom-Pom model. J Rheol 45:823–843

    Article  CAS  Google Scholar 

  • Verbeeten WHM, Peters GWM, Baaijens FPT (2002) Viscoelastic analysis of complex polymer melt flows using the extended Pom-Pom model. J Non-Newtonian Fluid Mech 108:301–326

    Google Scholar 

  • Vleeshouwers S, Meijer HEH (1996) A rheological study of shear induced crystallization. Rheol Acta 35:391–399

    CAS  Google Scholar 

  • Watanabe H (1999) Viscoelasticity and dynamics of entangled polymers. Prog Polym Sci 24:1253–1403

    Article  CAS  Google Scholar 

  • Welsh GE, Blundell DJ, Windle AH (1998) A transient liquid crystalline phase as a precursor for crystallization in random co-polyester fibers. Macromolecules 31:7562–7565

    Article  CAS  Google Scholar 

  • Welsh GE, Blundell DJ, Windle AH (2000) A transient mesophase on drawing polymers based on polyethylene terephthalate (PET) and polyethylene naphthoate (PEN). J Mater Sci 35:5225–5240

    Article  CAS  Google Scholar 

  • Winter HH (1997) Analysis of dynamic mechanical data: inversion into a relaxation time spectrum and consistency check. J Non-Newtonian Fluid Mech 68:225–239

    Google Scholar 

  • Ziabicki A (1976) Fundamentals of fiber formation. Wiley, London

  • Zuidema H (2000) Flow induced crystallization. Application to inject molding. PhD thesis, University of Technology Eindhoven, the Netherlands

  • Zuidema H, Peters GWM, Meijer HEH (2001) Development and validation of a recoverable strain based model for flow-induced crystallization of polymers. Macromol Theory Simul 10:447–460

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Frank Swartjes for providing the simulation results and experimental data for Figs. 3 and 4, Juan Vega for the discussion on the determination of τe for iPP, Ray Somani and Ben Hsiao for providing the molecular weight distribution of the melt in Somani et al. (2000, 2001) and Hans Christian Öttinger for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan van Meerveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Meerveld, J., Peters, G.W.M. & Hütter, M. Towards a rheological classification of flow induced crystallization experiments of polymer melts. Rheol Acta 44, 119–134 (2004). https://doi.org/10.1007/s00397-004-0382-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0382-7

Keywords

Navigation