Skip to main content
Log in

A method to extract the monomer friction coefficient from the linear viscoelastic behavior of linear, entangled polymer melts

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological properties of isotactic and atactic polypropylene melts are analyzed in order to obtain the equilibration time, τ e, and monomer friction coefficient, ζ. A procedure is proposed to determine τ e from the zero shear rate viscosity, η 0, using the magnitude of the molecular weight per entanglement, M e, from the literature. This procedure can be applied to both mono- and polydisperse linear, entangled polymer melts. For different polymers this procedure gives very similar results compared to the description of the storage and loss modulus of nearly monodisperse linear, entangled polymer melts by molecular based theories, as well as with values of ζ reported in the literature for linear, non-entangled polymer melts. It is observed that for isotactic and atactic polypropylene M e differs by a factor 1.25 depending on the approach taken. As a consequence, the magnitude of τ e and ζ differ by a factor of about 3.0 and 1.8, respectively. The knowledge of τ e (or ζ) is of importance in order to obtain a better understanding of flow induced crystallization experiments on iPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar M, Vega JF, Sanz E, Marínez-Salazar J (2001) New aspects on the rheological behavior of metallocene catalyzed polyethylenes. Polymer 42:9713–9721

    Article  CAS  Google Scholar 

  • Aguilar M, Vega JF, Pena B, Marínez-Salazar J (2003) Novel features of the rheological behavior of metallocene catalyzed atactic polypropylene. Polymer 44:1401–1407

    Article  CAS  Google Scholar 

  • Berger L, Meissner J (1992) Linear viscoelasticity, simple and planar melt extension of linear polybutadienes with bimodal molar mass distributions. Rheol Acta 31:63–74

    CAS  Google Scholar 

  • des Cloizeaux J (1988) Double reptation vs simple reptation in polymer melts. Europhys Lett 5:437–442

    Google Scholar 

  • des Cloizeaux J (1990) Relaxation of entangled polymers in melts. Macromolecules 23:3392–4406

    Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, Oxford

  • Eckstein A, Suhm J, Friedrich C, Maier R-D, Sassmannshausen J, Bochmann M, Mühlhaupt R (1998) Determination of plateau moduli and entanglement molecular weights of isotactic, syndiotactic and atactic polypropylenes synthesized with metallocene catalysts. Macromolecules 31:1335–1340

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

  • Fetters LJ, Graessley WW, Kiss AD (1991) Viscoelastic properties of polyisobutylene melts. Macromolecules 24:3136–3141

    CAS  Google Scholar 

  • Fetters LJ, Kiss AD, Pearson DS, Quack GF, Vitus FJ (1993) Rheological behavior of star-shaped polymers. Macromolecules 26:647–654

    CAS  Google Scholar 

  • Fetters LJ, Lohse DJ, Richter D, Witten TA, Zirkel A (1994) Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27:4639–4647

    CAS  Google Scholar 

  • Fetters LJ, Lohse DJ, Colby R (1996) In: Mark JE (ed) Chain dimensions and entanglement spacings. Physical properties of polymers, pp 335–340

  • Fetters LJ, Lohse DJ, Graessley WW (1999) Chain dimensions and entanglements spacings in dense macromolecular systems. J Polym Sci B Polym Phys 37:1023–1033

    Article  CAS  Google Scholar 

  • Gell CB, Graessley WW, Letter LJ (1997) Viscoelasticity and self-diffusion in melts of entangled linear polymers. J Polym Sci B Polym Phys 35:1933–1942

    Article  CAS  Google Scholar 

  • Graessley WW, Roovers J (1979) Melt rheology of four-arm and six-arm star polystyrenes. Macromolecules 12:959–965

    CAS  Google Scholar 

  • Graham RS, McLeish TCB, Harlen OG (2001) Using the Pom-Pom equations to analyze polymer melts in exponential shear. J Rheol 45:275–290

    CAS  Google Scholar 

  • Haley JC, Lodge TP, He Y, Ediger MD, von Meerwall ED, Mijovic J (2003) Composition and temperature dependence of terminal and segmental dynamics in polyisoprene/poly(vinylethylene) blends. Macromolecules 36:6142–6151

    Article  CAS  Google Scholar 

  • Keller A, Kolnaar HWH (1997) In: Meijer HEH (ed) Flow induced orientation and structure formation. Material Science and Technology 18:189–268

    CAS  Google Scholar 

  • Kraft M, Meissner J, Kaschta J (1999) Linear viscoelastic characterization of polymer melts with long relaxation times. Macromolecules 32:751–757

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Graessley WW, Zirkel A, Richter D, Hadjichristidis N, Letters LJ, Lohse DJ (2002) Melt-state polymer chain dimensions as a function of temperature. J Polym Sci B Polym Phys 40:1768–1776

    Article  CAS  Google Scholar 

  • Larson RG, Sridhar T, Leal LG, McKinley GH, Likhtman AE, McLeish TCB (2003) Definitions of entanglement spacing and time constants in the tube model. J Rheol 47:809–818

    Article  CAS  Google Scholar 

  • Likhtman AE, McLeish TCB (2002) Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35:6332–6343

    Article  CAS  Google Scholar 

  • Majeste JC, Monfort JP, Allan A, Marin G (1998) Viscoelasticity of low molecular weight polymers and the transition to the entangled regime. Rheol Acta 37:486–499

    Article  Google Scholar 

  • Milner ST, McLeish TCB (1998) Reptation and contour length fluctuations in melts of linear polymers. Phys Rev Lett 81:725–728

    Article  CAS  Google Scholar 

  • Nogales A, Hsiao BS, Somani RHM, Srinivas S, Tsou AH, Balta-Calleja FJ, Eqyuerra TA (2001) Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies. Polymer 42:5247–5256

    Article  CAS  Google Scholar 

  • Pattamaprom C, Larson RG (2001) Predicting the linear viscoelastic properties of monodisperse and polydisperse polystyrenes and polyethylenes. Rheol Acta 40:516–532

    Article  CAS  Google Scholar 

  • Pattamaprom C, Larson RG, Van Dyke TJ (2000) Quantitative predictions of linear viscoelastic rheological properties of entangled polymers. Rheol Acta 39:517–531

    Article  CAS  Google Scholar 

  • Pearson DS, Ver Strate G, von Meerwall E, Schilling FC (1987) Viscosity and self-diffusion coefficient of linear polyethylene. Macromolecules 20:1133–1141

    CAS  Google Scholar 

  • Pearson DS, Fetters LJ, Younghouse LB, Mays JW (1988) Rheological properties of poly(1,2-dimethyl-1-butenylene) and model atactic polypropylene. Macromolecules 21:478–484

    CAS  Google Scholar 

  • Plazek DL, Plazek DJ (1983) Viscoelastic behavior of atactic polypropylene. Macromolecules 16:1469–1475

    CAS  Google Scholar 

  • Raju VR, Rachpudy H, Graessley WW (1979) Properties of amorphous and crystallizable hydrocarbon polymers. IV. Melt rheology of linear and star-branched hydrogenated polybutadiene. J Polym Sci Polym Phys Ed 17:1223–1235

    Article  CAS  Google Scholar 

  • Raju VR, Menezes EV, Marin G, Graessley WW, Fetters LJ (1981) Concentration and molecular weight dependence of viscoelastic properties of linear and star polymers. Macromolecules 14:1668–1676

    CAS  Google Scholar 

  • Schweizer KS, David EF, Singh C, Curro JG, Rajasekaran JJ (1995) Structure-property correlations of atomistic and course-grained models of polymer melts. Macromolecules 28:1528–1540

    CAS  Google Scholar 

  • Seki M, Thurman D, Oberhauser J, Kornfield JA (2002) Shear-mediated crystallization of isotactic polypropylene. The role of long chain-long chain overlap. Macromolecules 35:2583–2594

    Article  CAS  Google Scholar 

  • Struglinski MJ, Graessley WW (1985) Effects of polydispersity on the linear viscoelastic properties of entangled polymers. 1. Experimental observations for binary mixtures of linear polybutadiene. Macromolecules 18:2630–2643

    CAS  Google Scholar 

  • Tsenoglou C (1987) Viscoelasticity of binary homopolymer blends. ACS Polym Preprints 28:185–186

    CAS  Google Scholar 

  • van Meerveld J, Peters GWM, Hütter M (2003) Towards a rheological classification of flow induced crystallization experiments of polymer melts. Preprint

  • Vega JF, Aguilar M, Marínez-Salazar J (2003) Model linear metallocene-catalyzed polyolefins: melt rheological behavior and molecular dynamics. J Rheol 47:1505–1521

    Article  CAS  Google Scholar 

  • Vleeshouwers S, Meijer HEH (1996) A rheological study of shear induced crystallization. Rheol Acta 35:391–399

    Google Scholar 

  • Wasserman SH, Graessley WW (1992) Effects of polydispersity on linear viscoelasticity in entangled polymer melts. J Rheol 36:543–572

    CAS  Google Scholar 

  • Wasserman SH, Graessley WW (1996) Prediction of linear viscoelastic response for entangled polyolefin melts from molecular weight distribution. Polym Eng Sci 36:852–861

    Google Scholar 

  • Wood-Adams PM, Dealy JM, de Groot AW, Redwine OD (2000) Effect of molecular structure on the linear viscoelastic behavior of polyethylene. Macromolecules 33:7489–7499

    Article  CAS  Google Scholar 

  • Zirkel A, Urban V, Richter D, Fetters LJ, Huang JS, Kampmann R, Hadjichristidis H (1992) Small-angle neutron scattering evaluation of the temperature dependence of atactic polypropylene and poly(1-butene) chain dimensions in the melt. Macromolecules 25:6148–6155

    CAS  Google Scholar 

Download references

Acknowledgement

The author thanks Prof. Hans Christian Öttinger for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan van Meerveld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Meerveld, J. A method to extract the monomer friction coefficient from the linear viscoelastic behavior of linear, entangled polymer melts. Rheol Acta 43, 615–623 (2004). https://doi.org/10.1007/s00397-004-0358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-004-0358-7

Keywords

Navigation