Skip to main content
Log in

Modelling the biaxial elongational deformation of soft solids

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

This paper reports the results of modelling the biaxial extension of soft solids in lubricated squeezing flow geometry. The nonlinear constitutive model including the single mode Phan-Thien Tanner (PTT) model has been used to model the behaviour of different materials such as a soft tissue (pig liver) and three wheat flours with different protein contents. These were used to evaluate the usefulness of the method and to establish how different compositional or structural parameters could be relevant in determining the rheological behaviour of soft solids. From this study it was found that homogeneous uniaxial compression can be achieved in lubricated squeezing flow. Modelling results are in good agreement with experimental results for all the materials considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  • Bagley EB, Christianson D (1986) Response of commercial chemically leavened doughs to uniaxial compression. Fundamentals of dough rheology. In: Faridi H, Faubion J (eds) American Association of Cereal Chemists St Paul MN 27-36

  • Bilston LE, Liu Z, Phan-Thien N (1998) Linear viscoelastic properties of bovine brain tissue in shear. Biorheol 34(6):377–385

    Article  Google Scholar 

  • Bilston LE, Liu Z, Phan-Thien N (2001) Large strain behaviour of brain tissue in shear: some experimental data and differential constitutive model. Biorheology 38(4):335–345

    CAS  PubMed  Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids, vol 1. Willey Press

  • Brindley G, Davies JM, Walters K (1976) Elastico-viscous squeeze films: part1. J Non-Newtonian Fluid Mech 1:19–37

    Google Scholar 

  • Burghardt WR, Li JM, Khomami B, Yang B (1999) Uniaxial extensional characterization of a shear thinning fluid using axisymmetric flow birefringence. J Rheol 43(1):147–165

    Article  CAS  Google Scholar 

  • Chatraei SH, Macosko CW, Winter HH (1981) Lubricated squeezing flow: a new biaxial extension rheometer. J Rheol 25(4):433–443

    CAS  Google Scholar 

  • Chinzei K, Miller K (1996) Compression of swine brain tissue: experiment in vitro. J Mech Eng Lab Namiki Tsukuba-shi Ibaraki Japan 50(4):19–28

    Google Scholar 

  • Co A, Bird RB (1974) Analysis of squeezing flow between parallel disks using Goddard-Miller model. Rheology Research Center Reports, RRC31, October, University of Wisconsin USA

  • Corradini MG, Stern V, Suowonsichon T, Peleg M (2000) Squeezing flow of semi liquid foods between parallel Teflon coated plates. Rheol Acta 39:452–460

    CAS  Google Scholar 

  • Denn MM, Marrucci G (1999) Squeeze flow between finite plates. J Non-Newtonian Fluid Mech 87:175–178

    Google Scholar 

  • Dhanasekharan M, Huang H (1999) Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner models. J Text Stud 30:603–623

    CAS  Google Scholar 

  • Grimm RJ (1977) Squeezing flows of polymeric liquids. Rheology Research Center Reports, RRC45 June, University of Wisconsin USA

  • Hencky H (1929) Welche Umstande bedingen die Verfestigung bei der bildsamen verformung von festen isotropen Korpern? Z Physik 55:145–155

    CAS  Google Scholar 

  • Hoffner B, Campanella OH, Corradini MG, Peleg M (2001) Squeezing flow of a highly viscous incompressible liquid pressed between slightly inclined lubricated wide plates. Rheol Acta 40:289–295

    Article  CAS  Google Scholar 

  • Huang H, Kokini JL (1993) Measurement of biaxial extensional viscosity of wheat flour doughs. J Rheol 37(5):879–891

    CAS  Google Scholar 

  • Janssen AM, Van-Vleit T, Vereijken JM (1996) Fundamental and empirical rheological behaviour of wheat flour doughs and comparison with bread-making performance. J Cereal Sci 23:43–54

    Article  CAS  Google Scholar 

  • Kompani M, Venerus DC (2000) Equibiaxial extensional flow of polymer melts via lubricated squeezing flow. I. Experimental analysis. Rheol Acta 39 5:444–451

    Article  Google Scholar 

  • Kruse SA, Smith JA, Lawrence AJ, Dresner MA, Manduca A, Greenleaf JF, Ehman RL (2000) Tissue characterization using magnetic resonance elastography: preliminary results. Phys Med Biol 45(6):1579–1590

    Article  CAS  PubMed  Google Scholar 

  • Laun HM, Rady M, Hassager O (1999) Analytical solutions for squeeze flow with partial wall slip. J Non-Newtonian Fluid Mech 81:1–15

    Google Scholar 

  • Leider PJ (1974) Squeezing flow between parallel disks (II): experiments. Ind Eng Chem Fund 13:342–346

    CAS  Google Scholar 

  • Liu Z, Bilston LE (2000) On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology 37(3):191–201

    CAS  PubMed  Google Scholar 

  • Liu Z, Bilston LE (2002) Large deformation shear properties of liver tissue. Biorheology 39(6):735–742

    PubMed  Google Scholar 

  • Macosko CW (1994) Rheology principles: measurement and applications. Advances in interfacial engineering. VCH Publishers, NY, p 550

    Google Scholar 

  • Mendis KK, Stalnaker RL, Advani SH (1995) A constitutive relation for large deformation finite element modelling of brain tissue. Trans ASME J Biomech Eng 117:279–285

    CAS  Google Scholar 

  • Miller K (2000) Constitutive modelling of abdominal organs. J Biomech 33:367–373

    Article  CAS  PubMed  Google Scholar 

  • Miller K, Chinzei K (1997) Constitutive modelling of brain tissue: Experiment and theory. J Biomech 30(11/12):1115–1121

    Google Scholar 

  • Nasseri S, Bilston LE, Phan-Thien N (2001) Viscoelastic properties of pig kidney in shear: experimental results and modelling. Rheol Acta 41:180–192

    Article  Google Scholar 

  • Pamidi MR, Advani SH (1978) Nonlinear constitutive relations for human brain tissue. Trans ASME J Biomech Eng 100:44–48

    Google Scholar 

  • Phan-Thien N (1982) Hydrodynamic lubrication of rough surfaces. Proc R Soc London A 383:439–446

    Google Scholar 

  • Phan-Thien N, Tanner RI (1977) A new constitutive equation derived from network theory. J Non-Newtonian Fluid Mech 2:353–365

    Google Scholar 

  • Phan-Thien N, Sugeng F, Tanner RI (1987) The squeeze-film of a viscoelastic fluid. J Non-Newtonian Fluid Mech 24:97–119

    Google Scholar 

  • Phan-Thien N, Safari-Ardi M, Morales-Patino A (1997) Oscillatory and simple shear flows of a flour-water dough: a constitutive model. Rheol Acta 36:38–48

    CAS  Google Scholar 

  • Phan-Thien N, Nasseri S, Bilston LE (2000) Oscillatory squeezing flow of a biological material Rheol Acta 39:409–417

    Article  CAS  Google Scholar 

  • Schofield RK, Scott Blair GW (1932) Plastic strength of soft materials, the relationship between viscosity, elasticity and plastic strength of soft materials as illustrated by some mechanical properties of flour doughs I. Proc R Soc A 138:707–718

    Google Scholar 

  • Scott JR (1931) Theory and application of the parallel-plate plastimeter. Trans IRI 7:169–175

    CAS  Google Scholar 

  • Solovyov SE, Virkler TL, Scott CE (1999) Rheology of ABS polymer melts and viscoelastic constitutive models. J Rheol 43(4):977–990

    CAS  Google Scholar 

  • Tanner RI (2000) Engineering rheology, 2nd edn. Oxford University Press, London

  • Van-Vliet T, Janssen AM, Bloksma AH, Walstra P (1992) Strain hardening of dough as a requirement for gas retention. J Text Stud 23:439–460

    Google Scholar 

  • Venerus DC, Kompani M, Bernstein B (2000) Equibiaxial extensional flow of polymer melts via lubricated squeezing flow: II. Flow modeling. Rheol Acta 39(6):574–582

    Article  CAS  Google Scholar 

  • Wikstrom K (1997) Biaxial extensional flow of wheat flour doughs; rheology of wheat flour doughs at large deformations and the relations to baking quality and physical structure. PhD Thesis, Lund University, Sweden

Download references

Acknowledgments

The authors would like to thank Rebecca Cullinane for providing the experimental data on pig liver. The financial support of the Australian Research Council Large Grant Scheme is gratefully acknowledged

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Tanner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nasseri, S., Bilston, L., Fasheun, B. et al. Modelling the biaxial elongational deformation of soft solids. Rheol Acta 43, 68–79 (2004). https://doi.org/10.1007/s00397-003-0321-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-003-0321-z

Keywords

Navigation