Colloid and Polymer Science

, Volume 275, Issue 3, pp 244–253

Chemical heterogeneity in poly [styrene-co-(butyl methacrylate)] copolymer latexes prepared using different monomer addition modes. A study by isopycnic centrifugation in density gradient

  • A. L. Herzog Cardoso
  • J. M. Moita Neto
  • A. Cardoso
  • F. Galembeck
Original Contribution

Abstract

Three different styrene-butyl methacrylate copolymer latexes were prepared by a uniform procedure but introducing styrene (S), butyl methacrylate (BMA), and minor amounts of acrylic acid (AA), in three different orders: i) simultaneous monomers addition, which yielded P(SBMA); ii) addition of S (and half of the AA) followed by BMA (and the remaining AA), yielding PS/PBMA and iii) the inverse order, PBMA/PS. Product characterization was done by centrifugation in density gradients coupled to scattered light scanning photometry of the centrifugation tubes. IR and NMR spectra were obtained from bulk polymer as well as from isopycnic centrifugation fractions. In agreement with findings of other authors, the particles produced by simultaneous monomer addition P(SBMA) are made out of the statistical copolymer, whereas sequential monomer addition leads to the formation of latex with homopolymer domains. IR and NMR spectra of PS/PBMA and PBMA/PS are identical but isopycnic density band profiles of all three samples are distinct. Acrylic acid residues are not detected in the dialyzed latex, using both IR and NMR. Spectra of latex isopycnic fractions do also show significant differences arising from their monomer chemical compositions, but isopycnic centrifugation and spectral data do not reveal any correlation between particle density and monomer composition. Isopycnic centrifugation can thus solve two problems on latex characterization: first, it is a high-resolution preparative technique, unmatched by any other separation method. Second, it yields latex particle fingerprints, which are dependent on particle chemical characteristics, rather than on particle diameters.

Key words

Polymer latex emulsion polymerization chemical heterogeneity isopycnic centrifugation density gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    (a) Napper DH, Gilbert RG (1989) In: Eastmond GC, Ledwith A, Russo S, Sigwalt P (eds) Comprehensive Polymer Science. Pergamon Press, London, Vol 4, pp 171–218 (b) Klein A (1981) In: Kirk RE, Othmer DF, Grayson M, Eckroth D (eds) Encyclopedia of Chemical Technology. 3rd Edn., John Wiley & Sons, New York, Vol 14, pp 82-97 (c) Poehlein GW (1986) In: Mark HF, Kroschwitz JI (eds) Encyclopedia of Polymer Science and Engineering. John Wiley & Sons, New York, Vol 6, pp 1-55 (d) Blackley DC (1987) In: Mark HF, Kroschwitz JI (eds) Encyclopedia of Polymer Science and Engineering. John Wiley & Sons, New York, Vol 8, pp 647-677 (e) Daniels ES, Sudol ED, El-Aasser MS (1992) Polymer Latexes: Preparation, Characterization, and Applications. ACS Symposium Series 492, American Chemical Society: Washington, DCGoogle Scholar
  2. 2.
    (a) van Doremaele GHJ, Geerts FHJM, van de Meulen LJ, German AL (1992) Polymer 33:1512–1518 (b) van Doremaele GHJ, van Herk AM, German AL (1990) Makromol Chem, Makromol Symp 35/36:231-248CrossRefGoogle Scholar
  3. 3.
    Lange H (1979) Colloid Polym Sci 258: 1077–1085Google Scholar
  4. 4.
    Machtle W (1984) Colloid Polym Sci 265:270–282CrossRefGoogle Scholar
  5. 5.
    Lange H (1981) In: Basset DR, Hamielec AE (eds) Emulsions Polymers and Emulsion Polymerization. ACS Symposium Series 165. American Chemical Society, Washington, DC, Chapter 14, pp 239–249Google Scholar
  6. 6.
    (a)Zosel A, Heckmann W, Ley G, Mächtle W (1990) Makromol Chem, Makromol Symp 35/36:423–446 (b) Zosel A, Heckmann W, Ley G, Mächtle W (1989) In: Patsis AV (ed) Advances in Organic Coatings Science and Technology Series. Technomic, Lancaster, Vol 11, pp 15-22Google Scholar
  7. 7.
    Pires Costa MC, Galembeck F (1988) Colloid Surf 33:175–184CrossRefGoogle Scholar
  8. 8.
    Winkler-Hechenleitner AA, Galembeck F (1990) Sep Sci Technol 25(3):293–308CrossRefGoogle Scholar
  9. 9.
    Takayasu MM, Galembeck F (1993) J Colloid Interface Sci 155:16–22CrossRefGoogle Scholar
  10. 10.
    Moita Neto JM, Herzog Cardoso AL, Testa AP, Galembeck F (1994) Lang-muir 10:2095–2099CrossRefGoogle Scholar
  11. 11.
    Trent JS, Scheinbeim JI, Couchman PR (1983) Macromolecules 16:589–598CrossRefGoogle Scholar
  12. 12.
    Trent JS (1984) Macromolecules 17:2930–2031CrossRefGoogle Scholar
  13. 13.
    Hames BD (1987) In: Rickwood D (ed) Centrifugation: A Practical Approach. IRL, Oxford, Chapter 2, pp 64–65Google Scholar
  14. 14.
    Fitch RM (1985) In: Mark HF, Kroschwitz JI (eds) Encyclopedia of Polymer Science and Engineering. John Wiley & Sons: New York, Vol 3, pp 727–746Google Scholar
  15. 15.
    Schild RL, El-Aasser MS, Poehlein GW, Vanderhoff JW (1978) In: Becher P, Yudenfreund MN (eds) Emulsions, Lati-ces, Dispersions. Marcel Dekker, New York, pp 99–128Google Scholar
  16. 16.
    Lee DI (1990) Makromol Chem, Makromol Symp 33:117–131Google Scholar
  17. 17.
    Hamielec AE, Tobita H (1992) In: Elvers B, Hawkins S, Schulz G (eds) Üllmann’s Encyclopedia of Industrial Technology. VCH: Weinheim, Vol A21, pp 305–128Google Scholar
  18. 18.
    Kapur GS, Brar AS (1991) Indian J Chem 30A:493–196Google Scholar
  19. 19.
    (a) Bovey FA (1972) High Resolution NMR of Macromolecules. Academic Press: New York, Chapter 6, pp 118–129 (b) Sato H, Tanaka Y (1984) In: Randall JC (ed) NMR and Macromolecules: Sequence, Dynamic, and Domain Structure. American Chemical Society, Washington DC, Chapter 12, pp 181-196 (c) Ishihara N, Seimiya T, Kuramoto M, Uoi M (1986) Macromolecules 19: 2465-2466Google Scholar
  20. 20.
    Heffner SA, Bovey FA, Verge LA, Mirau PA, Tonelli AE (1986) Macromolecules 19:1628–1634CrossRefGoogle Scholar
  21. 21.
    Tacx JCJF, Van der Velden GPM, German AL (1988) J Polym Sci, Polym Chem Ed 26:1439–1456CrossRefGoogle Scholar
  22. 22.
    Mochel VD (1969) Macromolecules 2(5):537–540CrossRefGoogle Scholar
  23. 23.
    Lee S, Rudin A (1992) J Polym Sci, Polym Chem Ed 30:865–871CrossRefGoogle Scholar
  24. 24.
    Chen YC, Dimonie VL, Shaffer OL, El-Aasser MS (1993) Polym Int 30:185–194CrossRefGoogle Scholar
  25. 25.
    Okubo M (1990) Makromol Chem, Makromol Symp 35/36:307–325Google Scholar
  26. 26.
    Kawasaki A, Furukawa J, Tsuruta T, Wasai G, Makimoto T (1961) Macromol Chem 49:76–111CrossRefGoogle Scholar
  27. 27.
    Liang CY, Krimm S (1958) J Polym Sci 27:241–254CrossRefGoogle Scholar
  28. 28.
    Siqueira DF, Nunes SP, Wolf BA (1994) Macromolecules 27:1045–1050CrossRefGoogle Scholar
  29. 29.
    Hummel DO, Scholl F (1988) Atlas of Polymer and Plastics Analysis. Carl Hanser Verlag: Munich, Vol 2, Part b/I, pp 155–159Google Scholar
  30. 30.
    Moita Neto JM, Monteiro VAR, Galembeck F (1996) Colloid Surf A: Physicochem Eng Aspects 108:83–89CrossRefGoogle Scholar
  31. 31.
    Min TI, Klein A, El-Aasser MS, Vanderhoff JW (1983) J Polym Sci, Polym Chem Ed 21:2845–2861CrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag 1997

Authors and Affiliations

  • A. L. Herzog Cardoso
    • 1
  • J. M. Moita Neto
    • 2
  • A. Cardoso
    • 3
  • F. Galembeck
    • 3
  1. 1.Departamento de Ciências Físicas e BiológicasUniversidade Regional do Cariri URCACrato-CeBrazil
  2. 2.Departamento de QuímicaUniversidade Federal do PiauiTeresina-PiBrazil
  3. 3.Instituto de QuímicaUniversidade Estadual de CampinasCampinas-SPBrazil

Personalised recommendations