Skip to main content
Log in

Study of sorption properties of zirconia, alumina, and silica in relation to repellents

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this work, the morphology of zirconia, alumina, and silicas was studied, and static sorption of the repellents N, N-diethyl-3-methylbenzamide and ethyl-3-[acetyl(butyl)amino]propionate on these oxides was carried out. ZrO2, Al2O3, and SiO2 phenyl were shown to have high sorption activity to the repellents N, N-diethyl-3-methylbenzamide (239 mg/g for SiO2 phenyl) and ethyl-3-[acetyl(butyl)amino]propionate (251 mg/g for ZrO2). Pointedly, it was found that despite having the largest pore volume and high specific surface area (compared to the other studied oxides), SiO2 C2 has a significantly inferior sorption capacity in respect to other oxides, in particular SiO2 phenyl, which can be explained by the presence of the phenyl group in the latter that has chemical affinity for repellent molecules. Obtained isotherms of SiO2 300 also confirm the low sorption activity towards N, N-diethyl-3-methylbenzamide. The sorption equilibrium for both repellents, in most cases, is described by the Langmuir monomolecular adsorption model. The obtained results suggest that the studied zirconia, alumina, and silica can be used as carrier components of repellents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The manuscript reports the complete dataset. If needed, the corresponding author can be contacted via email for further calculations.

References

  1. Annandarajah C (2019) Biobased plastics with insect-repellent functionality. Polym Eng Sci 59(s2):E460–E467. https://doi.org/10.1002/pen.25083

    Article  CAS  Google Scholar 

  2. da Silva MRM, Ricci-Júnior E (2020) An approach to natural insect repellent formulations: from basic research to technological development. Acta tropica 212:105419. https://doi.org/10.1016/j.actatropica.2020.105419

    Article  CAS  PubMed  Google Scholar 

  3. Nogueira Barradas T (2016) Polymer-based drug delivery systems applied to insects repellents devices: a review. Curr Drug Deliv 13(2):221–235

    Article  Google Scholar 

  4. World Health Organization (2022) World malaria report 2022. – World Health Organization

    Google Scholar 

  5. Climate change and health [Electronic resource]. https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health

  6. Emam HE, Abdelhameed RM (2017) In-situ modification of natural fabrics by Cu-BTC MOF for effective release of insect repellent (N, N-diethyl-3-methylbenzamide). J Porous Mater 24:1175–1185. https://doi.org/10.1007/s10934-016-0357-y

    Article  CAS  Google Scholar 

  7. Tavares M et al (2018) Trends in insect repellent formulations: a review. Int J Pharm 539(1–2):190–209. https://doi.org/10.1016/j.ijpharm.2018.01.046

    Article  CAS  PubMed  Google Scholar 

  8. Du F (2022) 3D-Printing of the polymer/insect-repellent system poly (L-lactic acid)/ethyl butylacetylaminopropionate (PLLA/IR3535). Int J Pharm 624:122023. https://doi.org/10.1016/j.ijpharm.2022.122023

    Article  CAS  PubMed  Google Scholar 

  9. Xiang C (2020) Structure and properties of polyamide fabrics with insect-repellent functionality by electrospinning and oxygen plasma-treated surface coating. Polymers 12:2196. https://doi.org/10.3390/polym12102196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Richoux GM (2020) Structure–activity relationship analysis of potential new vapor-active insect repellents. J Agric Food Chem 68(47):13960–13969. https://doi.org/10.1021/acs.jafc.0c03333

    Article  CAS  PubMed  Google Scholar 

  11. Paul R (ed) (2014) Functional finishes for textiles: improving comfort, performance and protection. Elsevier

    Google Scholar 

  12. Elsayed GA, Hassabo AG (2022) Insect repellent of cellulosic fabrics (a review). Lett Appl NanoBioSci 11:3181–3190. https://doi.org/10.33263/LIANBS111.31813190

    Article  Google Scholar 

  13. Song JY, Bhadra BN, Jhung SH et al (2017) Contribution of H-bond in adsorptive removal of pharmaceutical and personal care products from water using oxidized activated carbon. Microporous and mesoporous materials 243:221–228. https://doi.org/10.1016/j.micromeso.2017.02.024

    Article  CAS  Google Scholar 

  14. Trouvé A et al (2012) Tuning the hydrophobicity of mesoporous silica materials for the adsorption of organic pollutant in aqueous solution. J Hazard Mater 201:107–114. https://doi.org/10.1016/j.jhazmat.2011.11.043

    Article  CAS  PubMed  Google Scholar 

  15. Marocco A (2020) Removal of agrochemicals from waters by adsorption: a critical comparison among humic-like substances, zeolites, porous oxides, and magnetic nanocomposites. Processes 8(2):141. https://doi.org/10.3390/pr8020141

    Article  CAS  Google Scholar 

  16. Blachnio M (2023) Adsorption of phenoxyacetic herbicides from water on carbonaceous and non-carbonaceous adsorbents. Molecules 28(14):5404. https://doi.org/10.3390/molecules28145404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang L (2020) Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale 12(8):4790–4815. https://doi.org/10.1039/C9NR09274A

    Article  CAS  PubMed  Google Scholar 

  18. Ravindhranath K, Ramamoorty M (2017) Nano aluminum oxides as adsorbents in waterremediation methods: a review. Rasayan J Chem 10:716–722. https://doi.org/10.7324/RJC.2017.1031762

    Article  CAS  Google Scholar 

  19. Zotov R (2018) Influence of the composition, structure, and physical and chemical properties of aluminium-oxide-based sorbents on water adsorption ability. Materials 11(1):132. https://doi.org/10.3390/ma11010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reshetnikov S et al (2019) Effect of particle size on adsorption kinetics of water vapor on porous aluminium oxide material. J Phys Conf Ser 1145(1):012033. https://doi.org/10.1088/1742-6596/1145/1/012033

    Article  CAS  Google Scholar 

  21. Youssef WM, Hagag MS, Ali AH et al (2018) Synthesis characterization and application of composite derived from rice husk ash with aluminium oxide for sorption of uranium. Adsorpt Sci Technol 36(5–6):1274–1293. https://doi.org/10.1177/0263617418768920

    Article  CAS  Google Scholar 

  22. Hussain T et al (2022) Biogenic synthesis of date stones biochar-based zirconium oxide nanocomposite for the removal of hexavalent chromium from aqueous solution. Appl Nanosci 13:6053–6066. https://doi.org/10.1007/s13204-022-02599-z

    Article  CAS  Google Scholar 

  23. Dubey SS, Grandhi S (2019) Sorption studies of yttrium (III) ions on surfaces of nano-thorium (IV) oxide and nano-zirconium (IV) oxide. Int J Environ Sci Technol 16:59–70. https://doi.org/10.1007/s13762-017-1589-3

    Article  CAS  Google Scholar 

  24. Abass MR, El-Kenany WM, Eid MA et al (2023) Sorption of cesium and gadolinium ions onto zirconium silico antimonate sorbent from aqueous solutions. Appl Radiat Isot 192:110542. https://doi.org/10.1016/j.apradiso.2022.110542

    Article  CAS  PubMed  Google Scholar 

  25. Rahman N, Varshney P, Nasir M et al (2021) Synthesis and characterization of polydopamine/hydrous zirconium oxide composite and its efficiency for the removal of uranium (VI) from water. Environ Nanotechnol Monit Manag 15:100458. https://doi.org/10.1016/j.enmm.2021.100458

    Article  CAS  Google Scholar 

  26. Shen D (2022) Fabricating ultrafine zirconium oxide based composite sorbents in soft confined space for efficiently removing fluoride from environmental water. Chem Eng J 444:136199. https://doi.org/10.1016/j.cej.2022.136199

    Article  CAS  Google Scholar 

  27. Bardestani R, Patience GS, Kaliaguine S et al (2019) Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. Can J Chem Eng 97(11):2781–2791. https://doi.org/10.1002/cjce.23632

    Article  CAS  Google Scholar 

  28. Ragadhita R, Nandiyanto AB (2021) How to calculate adsorption isotherms of particles using two-parameter monolayer adsorption models and equations. Indones J Sci Technol 6(1):205–234. https://doi.org/10.17509/ijost.v6i1.32354

    Article  Google Scholar 

  29. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403

    Article  CAS  Google Scholar 

  30. Gohr MS (2022) Adsorption of cationic dyes onto chemically modified activated carbon: kinetics and thermodynamic study. J Mol Liq 346:118227. https://doi.org/10.1016/j.molliq.2021.118227

    Article  CAS  Google Scholar 

  31. Thommes M (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  32. Rezaee S, Ranjbar K, Kiasat AR et al (2018) The effect of surfactant on the sol–gel synthesis of alumina-zirconia nanopowders. Ceram Int 44(16):19963–19969. https://doi.org/10.1016/j.ceramint.2018.07.263

    Article  CAS  Google Scholar 

  33. Istomina LI et al (2024) A novel approach to making composite photocatalyst by peroxide sol–gel deposition of TiO2 on Al2O3 and ZrO2 nanosheets. Braz J Chem Eng 461:14. https://doi.org/10.1007/s43153-024-00461-z

    Article  CAS  Google Scholar 

  34. Chu KH (2021) Revisiting the Temkin isotherm: dimensional inconsistency and approximate forms. Ind Eng Chem Res 60(35):13140–13147. https://doi.org/10.1021/acs.iecr.1c01788

    Article  CAS  Google Scholar 

  35. Chu KH, Tan BC (2021) Is the Frumkin (Fowler–Guggenheim) adsorption isotherm a two-or three-parameter equation?  Colloid Interface Sci Commun 45:100519. https://doi.org/10.1016/j.colcom.2021.100519

    Article  Google Scholar 

  36. Tovbin YK (2017) The molecular theory of adsorption in porous solids. CRC Press

    Book  Google Scholar 

  37. Chu KH et al (2023) S-shaped adsorption isotherms modeled by the Frumkin–Fowler–Guggenheim and Hill–De Boer equations. Monatsh Chem Chemical Mon 154:1127–1135. https://doi.org/10.1007/s00706-023-03116-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the staff of the Nanyang Technological University (Singapore) and the staff of the Center for Instrumental Chemical Analysis and Complex Investigation of Substances and Materials of RTU MIREA (Russia) for their assistance in conducting physicochemical studies.

Funding

The work was carried out at the expense of the industry research program of Rospotrebnadzor for 2024–2025 (No. 1023032900395-5-1.6.23) and supported by Singapore MAR grant 04INS000458C150OOE01.

Author information

Authors and Affiliations

Authors

Contributions

Sergei A. Zverev: investigation, original draft. Yana V. Vinogradova: investigation. Anna A. Selivanova: investigation. Roman D. Solovov: methodology, resources. Konstantin A. Sakharov: visualization, review and editing. Anatoliy A. Ischenko: supervision. Sergei V. Andreev: original draft, project administration

Corresponding author

Correspondence to Sergei A. Zverev.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zverev, S.A., Vinogradova, Y.V., Selivanova, A.A. et al. Study of sorption properties of zirconia, alumina, and silica in relation to repellents. Colloid Polym Sci (2024). https://doi.org/10.1007/s00396-024-05260-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00396-024-05260-z

Keywords

Navigation