Skip to main content
Log in

Spray dried mebendazole–loaded Soluplus-based polymeric micelles for improved biopharmaceutical attributes: in vitro and in vivo studies

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The aim of this research was to investigate spray-dried mebendazole (MBZ)–loaded Soluplus-based polymeric micelles (MBZ@PMs) for improved solubility and bioabsorption upon oral administration. Following the MBZ@PM preparation, the formed micellar preparation was examined using FTIR, PXRD, DSC, and TEM techniques to determine its physical and chemical properties. Critical micelle concentration determination studies showed that Soluplus® can effectively generate stable polymeric micelles. Particle size analysis demonstrated spherical shape and a particle size of 538.7 ± 2.129 nm. Solubility studies demonstrated approximately eight times higher solubility of MBZ@PMs vis-à-vis MBZ in PBS pH 6.8 (90.16 ± 2.54 µg/mL v/s 11.97 ± 2.99 µg/mL). Stability studies confirmed that the size distribution and polydispersity index of the prepared polymeric micelles showed negligible variations. In vitro release studies revealed low MBZ release from MBZ@PMs (9.70 ± 3.2% in 2 h) at pH 1.2 and sustained (33.3 ± 3.9%) at PBS pH 6.8 in 48 h. In vivo pharmacokinetic studies showed approximately fourfold higher bioavailability (AUC0-ꝏ 153.81 ± 24.20 v/s 38.20 ± 5.55) and 1.5-fold extended half-life of MBZ from MBZ@PMs (2.13 ± 0.53 v/s 1.44 ± 0.36). Therefore, these unprecedented Soluplus®-based polymeric micelles of Mebendazole can be applied as a potential carrier system to improve the therapeutic efficacy of poorly water-soluble compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The entire information (and measurements) produced while experimenting is incorporated in the manuscript.

Abbreviations

MBZ:

Mebendazole

MBZ@PMs:

Mebendazole-loaded Soluplus®-based polymeric micelles

PM/PMs:

Polymeric micelles

CMC:

Critical micelle concentration

MBZ@ZIF-8:

Mebendazole-loaded Zeolitic Imidazolate Framework-8

TEM:

Transmission electron microscopy

FTIR:

Fourier transform infrared spectroscopy

DSC:

Differential scanning calorimetry

PXRD:

Powder X-ray diffraction

HPLC:

High-performance liquid chromatography

DI:

Deionized

DL:

Drug loading

EE:

Entrapment efficiency

PDI:

Polydispersity index

I2 :

Iodine

KBr:

Potassium bromide

IAEC:

Institutional Animal Ethics Committee

RH:

Relative humidity

ACN:

Acetonitrile

C max :

Maximum concentration

T max :

Time to reach maximum concentration

AUC:

Area under the curve

t 1/2 :

Elimination half-life

MRT:

Mean residence time

References

  1. Lavelle EC, Sharif S, Thomas NW, Holland J, Davis SS (1995) The importance of gastrointestinal uptake of particles in the design of oral delivery systems. Adv Drug Deliv Rev 18(1):5–22

    Article  CAS  Google Scholar 

  2. Deshpande AA, Rhodes CT, Shah NH, Malick AW (1996) Controlled-release drug delivery systems for prolonged gastric residence: an overview. Drug Dev Ind Pharm 22(6):531–539

    Article  CAS  Google Scholar 

  3. Dian L, Yang Z, Li F, Wang Z, Pan X, Peng X, Huang X, Guo Z, Quan G, Shi X, Chen B (2013) Cubic phase nanoparticles for sustained release of ibuprofen: formulation, characterization, and enhanced bioavailability study. Int J Nanomed 8:845

    Google Scholar 

  4. Johnston AP, Such GK, Ng SL, Caruso F (2011) Challenges facing colloidal delivery systems: from synthesis to the clinic. Curr Opin Colloid Interface Sci 16(3):171–181

    Article  CAS  Google Scholar 

  5. Grotz E, Tateosian NL, Salgueiro J, Bernabeu E, Gonzalez L, Manca ML, Amiano N, Valenti D, Manconi M, García V, Moretton MA (2019) Pulmonary delivery of rifampicin-loaded soluplus micelles against Mycobacterium tuberculosis. Journal of Drug Delivery Science and Technology 1(53):101170

    Article  Google Scholar 

  6. Al-Akayleh F, Zakari Z, Adwan S, Al-Remawi M (2020) Preparation, characterization and ex-vivo human skin permeation of ibuprofen-soluplus polymeric nanomicelles. Int J Pharm Sci Res 12:2863–2869

    Google Scholar 

  7. https://pubchem.ncbi.nlm.nih.gov/compound/Mebendazole. Accessed 3 Oct 2022

  8. Chen JM, Wang ZZ, Wu CB, Li S, Lu TB (2012) Crystal engineering approach to improve the solubility of mebendazole. CrystEngComm 14(19):6221–6229

    Article  CAS  Google Scholar 

  9. Canete R, Escobedo AA, Almirall P, Gonzalez ME, Brito K, Cimerman S (2009) Mebendazole in parasitic infections other than those caused by soil-transmitted helminths. Trans R Soc Trop Med Hyg 103(5):437–442

    Article  CAS  PubMed  Google Scholar 

  10. Garg A, Singh C, Pradhan D, Ghosh G, Rath G (2020) Topical application of nanoparticles integrated supramolecular hydrogels for the potential treatment of seborrhoeic dermatitis. Pharm Dev Technol 25(6):748–756

    Article  CAS  PubMed  Google Scholar 

  11. Singh C, Koduri LS, Dhawale V, Bhatt TD, Kumar R, Grover V, Tikoo K, Suresh S (2015) Potential of aerosolized rifampicin lipospheres for modulation of pulmonary pharmacokinetics and bio-distribution. Int J Pharm 495(2):627–632

    Article  CAS  PubMed  Google Scholar 

  12. Devasari N, Dora CP, Singh C, Paidi SR, Kumar V, Sobhia ME, Suresh S (2015) Inclusion complex of erlotinib with sulfobutyl ether-β-cyclodextrin: preparation, characterization, in silico, in vitro and in vivo evaluation. Carbohyd Polym 10(134):547–556

    Article  Google Scholar 

  13. Singh C, Bhatt TD, Gill MS, Suresh S (2014) Novel rifampicin–phospholipid complex for tubercular therapy: synthesis, physicochemical characterization and in-vivo evaluation. Int J Pharm 460(1–2):220–227

    Article  CAS  PubMed  Google Scholar 

  14. Dora CP, Trotta F, Kushwah V, Devasari N, Singh C, Suresh S, Jain S (2016) Potential of erlotinibcyclodextrinnanosponge complex to enhance solubility, dissolution rate, in vitro cytotoxicity and oral bioavailability. Carbohyd Polym 10(137):339–349

    Article  Google Scholar 

  15. Ghasemiyeh P, Mohammadi-Samani S (2018) Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Research in pharmaceutical sciences 13(4):288

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bajaj T, Singh C, Gupta GD (2022) Novel metal organic frameworks improves solubility and oral absorption of mebendazole: physicochemical characterization and in vitro-in vivo evaluation. Journal of Drug Delivery Science and Technology 1(70):103264

    Article  Google Scholar 

  17. Bhuptani RS, Jain AS, Makhija DT, Jagtap AG, Hassan PA, Nagarsenker MS (2016) Soluplus based polymeric micelles and mixed micelles of lornoxicam: design, characterization and In vivo efficacy studies in rats. Indian Journal of Pharmaceutical Education and Research 50(2):277–286

    CAS  Google Scholar 

  18. Qi X, Gao C, Yin C, Fan J, Wu X, Guo C (2021) Improved anticancer activity of betulinic acid on breast cancer through a grafted copolymer-based micelles system. Drug Delivery 28(1):1962–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sipos B, Csóka I, Ambrus R, Schelz Z, Zupkó I, Balogh GT, Katona G (2022) Spray-dried indomethacin-loaded polymeric micelles for the improvement of intestinal drug release and permeability. Eur J Pharm Sci 1(174):106200

    Article  Google Scholar 

  20. Rezazadeh M, Davatsaz Z, Emami J, Hasanzadeh F, Jahanian-Najafabadi A (2018) Preparation and characterization of spray-dried inhalable powders containing polymeric micelles for pulmonary delivery of paclitaxel in lung cancer. J Pharm Pharm Sci 21(1s):200s-s214

    Article  PubMed  Google Scholar 

  21. Ding Y, Wang C, Wang Y, Xu Y, Zhao J, Gao M, Ding Y, Peng J, Li L (2018) Development and evaluation of a novel drug delivery: Soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo. Drug Dev Ind Pharm 44(9):1409–1416

    Article  CAS  PubMed  Google Scholar 

  22. Zeng YC, Li S, Liu C, Gong T, Sun X, Fu Y, Zhang ZR (2017) Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta PharmacologicaSinica 38(3):424–433

    Article  CAS  Google Scholar 

  23. Chaudhary S, Garg T, Rath G, Murthy RR, Goyal AK (2016) Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis. Artificial Cells, Nanomedicine, and Biotechnology 44(3):937–942

    CAS  PubMed  Google Scholar 

  24. Wang S, Ye F, Wei F, Zhao G (2017) Spray-drying of curcumin-loaded octenylsuccinated corn dextrin micelles stabilized with maltodextrin. Powder Technol 1(307):56–62

    Article  Google Scholar 

  25. Aboul‐Enein HY, Bunaciu AA, Fleschin S (2002) Analysis of mebendazole polymorphs by Fourier transform IR spectrometry using chemometric methods. Biopolymers: Original Research on Biomolecules 67(1):56–60

    Article  Google Scholar 

  26. Jena SK, Singh C, Dora CP, Suresh S (2014) Development of tamoxifen-phospholipid complex: novel approach for improving solubility and bioavailability. Int J Pharm 473(1–2):1–9

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Cui C, Wei F, Lv H (2017) Improved solubility and oral bioavailability of apigenin via Soluplus/Pluronic F127 binary mixed micelles system. Drug Dev Ind Pharm 43(8):1276–1282

    Article  CAS  PubMed  Google Scholar 

  28. Ji S, Lin X, Yu E, Dian C, Yan X, Li L, Zhang M, Zhao W, Dian L (2018) Curcumin-loaded mixed micelles: preparation, characterization, and in vitro antitumor activity. Journal of Nanotechnology 1:2018

    Google Scholar 

  29. Zhou Y, Wang C, Liu W, Yang M, Xu B, Chen Y (2022) Fast in vitro release and in vivo absorption of an anti-schizophrenic drug paliperidone from its Soluplus®/TPGS mixed micelles. Pharmaceutics 14(5):889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li G, Lu Y, Fan Y, Ning Q, Li W (2020) Enhanced oral bioavailability of magnolol via mixed micelles and nanosuspensions based on Soluplus®-Poloxamer 188. Drug Delivery 27(1):1010–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jin IS, Jo MJ, Park CW, Chung YB, Kim JS, Shin DH (2020) Physicochemical, pharmacokinetic, and toxicity evaluation of soluplus® polymeric micelles encapsulating fenbendazole. Pharmaceutics 12(10):1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. https://pharma.basf.com/products/soluplus. Accessed 4 Apr 2022

  33. Bhattacharjee S (2016) DLS and zeta potential—what they are and what they are not? J Control Release 10(235):337–351

    Article  Google Scholar 

  34. Elzoghby AO, Helmy MW, Samy WM, Elgindy NA (2013) Spray-dried casein-based micelles as a vehicle for solubilization and controlled delivery of flutamide: formulation, characterization, and in vivo pharmacokinetics. Eur J Pharm Biopharm 84(3):487–496

    Article  CAS  PubMed  Google Scholar 

  35. Zhao J, Xu Y, Wang C, Ding Y, Chen M, Wang Y, Peng J, Li L, Lv L (2017) Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy. Drug Dev Ind Pharm 43(7):1197–1204

    Article  CAS  PubMed  Google Scholar 

  36. Agatonovic-Kustrin S, Glass BD, Mangan M, Smithson J (2008) Analysing the crystal purity of mebendazole raw material and its stability in a suspension formulation. Int J Pharm 361(1–2):245–250

    Article  CAS  PubMed  Google Scholar 

  37. Kumar S, Chawla G, Sobhia ME, Bansal AK (2008) Characterization of solid-state forms of mebendazole. Die Pharmazie-An International Journal of Pharmaceutical Sciences 63(2):136–143

    CAS  Google Scholar 

  38. Shamma RN, Basha M (2013) Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technol 1(237):406–414

    Article  Google Scholar 

  39. Bonde GV, Ajmal G, Yadav SK, Mittal P, Singh J, Bakde BV, Mishra B (2020) Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): Optimisation and in-vitro characterisation. Colloids Surf, B 1(185):110611

    Article  Google Scholar 

  40. Brusau EV, Camí GE, Narda GE, Cuffini S, Ayala AP, Ellena J (2008) Synthesis and characterization of a new mebendazole salt: mebendazole hydrochloride. J Pharm Sci 97(1):542–552

    Article  CAS  PubMed  Google Scholar 

  41. Liebenberg W, Dekker TG, Lotter AP, De Villiers MM (1998) Identification of the mebendazole polymorphic form present in raw materials and tablets available in South Africa. Drug Dev Ind Pharm 24(5):485–488

    Article  CAS  PubMed  Google Scholar 

  42. De Villiers MM, Terblanche RJ, Liebenberg W, Swanepoel E, Dekker TG, Song M (2005) Variable-temperature X-ray powder diffraction analysis of the crystal transformation of the pharmaceutically preferred polymorph C of mebendazole. J Pharm Biomed Anal 38(3):435–441

    Article  PubMed  Google Scholar 

  43. Altamimi MA, Neau SH (2017) Investigation of the in vitro performance difference of drug-Soluplus® and drug-PEG 6000 dispersions when prepared using spray drying or lyophilization. Saudi Pharmaceutical Journal 25(3):419–439

    Article  PubMed  Google Scholar 

  44. Piazzini V, D’Ambrosio M, Luceri C, Cinci L, Landucci E, Bilia AR, Bergonzi MC (2019) Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules 24(9):1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Alopaeus JF, Hagesæther E, Tho I (2019) Micellisation mechanism and behaviour of Soluplus®–furosemide micelles: preformulation studies of an oral nanocarrier-based system. Pharmaceuticals 12(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dian L, Yu E, Chen X, Wen X, Zhang Z, Qin L, Wang Q, Li G, Wu C (2014) Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Res Lett 9(1):1–1

    Article  CAS  Google Scholar 

  47. Singh J, Mittal P, VasantBonde G, Ajmal G, Mishra B (2018) Design, optimization, characterization and in-vivo evaluation of Quercetin enveloped Soluplus®/P407 micelles in diabetes treatment. Artificial Cells, Nanomedicine, and Biotechnology 46(sup3):S546–S555

    Article  CAS  PubMed  Google Scholar 

  48. Rani S, Mishra S, Sharma M, Nandy A, Mozumdar S (2020) Solubility and stability enhancement of curcumin in Soluplus® polymeric micelles: a spectroscopic study. J Dispersion Sci Technol 41(4):523–536

    Article  CAS  Google Scholar 

  49. Perumal S, Atchudan R, Lee W (2022) A review of polymeric micelles and their applications. Polymers 14(12):2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lim C, Ramsey JD, Hwang D, Teixeira SC, Poon CD, Strauss JD, Rosen EP, Sokolsky-Papkov M, Kabanov AV (2022) Drug-dependent morphological transitions in spherical and worm-like polymeric micelles define stability and pharmacological performance of micellar drugs. Small 18(4):2103552

    Article  CAS  Google Scholar 

  51. Pignatello R, Corsaro R, Bonaccorso A, Zingale E, Carbone C, Musumeci T (2022) Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv Transl Res 12(8):1991–2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Naksuriya O, Shi Y, Van Nostrum CF, Anuchapreeda S, Hennink WE, Okonogi S (2015) HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur J Pharm Biopharm 1(94):501–512

    Article  Google Scholar 

Download references

Acknowledgements

The authors are tremendously obliged to ISF College of Pharmacy, Moga, and IK Gujral Punjab Technical University, Kapurthala, Punjab, for equipping the laboratories with the required instrumentation (Spray dryer (SPD-P-111), FTIR, and DSC instrumentation) and research space to conduct the experiment. Besides, the authors also acknowledge the Panjab University, Chandigarh, for carrying out the PXRD analysis and Punjab Agricultural University, Ludhiana, for allowing the execution of TEM for the morphological analysis of the formulation. The authors duly acknowledge the Science and Engineering Research Board (SERB, GoI) for providing the necessary equipment (Spray Drying) to develop MBZ@PMs under the project EEQ/2020/000616.

Author information

Authors and Affiliations

Authors

Contributions

Every single author furnished the experimental formulation and execution. Tania Bajaj: executed the experimentation and documented the article. Charan Singh: co-supervision; designed the experiment and revised the article. Ghanshyam Das Gupta: supervision; designed the experiment and fundamentally looked into the manuscript. Each author has confirmed the data submitted in the manuscript.

Corresponding authors

Correspondence to Ghanshyam Das Gupta or Charan Singh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, T., Das Gupta, G. & Singh, C. Spray dried mebendazole–loaded Soluplus-based polymeric micelles for improved biopharmaceutical attributes: in vitro and in vivo studies. Colloid Polym Sci (2024). https://doi.org/10.1007/s00396-024-05251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00396-024-05251-0

Keywords

Navigation