Skip to main content
Log in

A rate-dependent aging constitutive model of EPDM rubber

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Based on the rate-dependent non-aging constitutive model and the rate-independent aging constitutive model, a rate-dependent aging constitutive model is proposed to explain the changes in mechanical properties of ethylene propylene diene monomer (EPDM) rubber under different strain rates and aging states. In order to simulate the actual use state of rubber, accelerated aging tests are conducted on the samples in a hot air aging environment. The grey wolf algorithm is utilized to accurately fit the engineering stress–strain curve obtained from the experiment, obtaining specific coefficient values that represent the effects of strain rate, aging time, and aging temperature in the constitutive model. The results confirm the effectiveness of the proposed rate-dependent aging constitutive model in accurately predicting the mechanical property changes of EPDM rubber under different strain rates and aging states. The consistency between the experimental data and the calculated results is within the acceptable error range. It is worth noting that the stress in the model shows the dependence on strain rate, aging time and aging temperature, emphasizing the mechanical property changes of EPDM rubber at high temperatures and low strain rates simulated in the uniaxial tensile state.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Obata Y, Kawabata S, Kawai H (1970) Mechanical properties of natural rubber Vulcanizates in finite deformation. J Polym Sci Part A-2: Polymer Physics 8(6):903–919. https://doi.org/10.1002/pol.1970.160080607

    Article  CAS  Google Scholar 

  2. Liu Y, Zhang Q, Liu R, Chen M, Zhang C, Li X, Li W, Wang H (2022) Compressive stress-hydrothermal aging behavior and constitutive model of shield tunnel EPDM rubber material. Constr Build Mater 320:126298. https://doi.org/10.1016/j.conbuildmat.2021.126298

    Article  CAS  Google Scholar 

  3. Gong C, Ding W, Xie D (2020) Parametric investigation on the sealant behavior of tunnel segmental joints under water pressurization. Tunn Undergr Space Technol 97:103231. https://doi.org/10.1016/j.tust.2019.103231

    Article  Google Scholar 

  4. Guo M, Li J, Xi K, Liu Y, Ji J (2019) Effect of multi-walled carbon nanotubes on thermal stability and ablation properties of EPDM insulation materials for solid rocket motors. Acta Astronaut 159:508–516. https://doi.org/10.1016/j.actaastro.2019.01.047

    Article  CAS  Google Scholar 

  5. Rallini M, Puri I, Torre L, Natali M (2018) Thermal and ablation properties of EPDM based heat shielding materials modified with density reducer fillers. Compos A 112:71–80. https://doi.org/10.1016/j.compositesa.2018.05.031

    Article  CAS  Google Scholar 

  6. Li K, Zheng J, Zhi J, Zhang K (2018) Aging constitutive model of hydroxyl-terminated polybutadiene coating in solid rocket motor. Acta Astronaut 151:555–562. https://doi.org/10.1016/j.actaastro.2018.06.060

    Article  CAS  Google Scholar 

  7. Gregori A, Castoro C, Marano GC, Greco R (2019) Strength reduction factor of concrete with recycled rubber aggregates from tires. Am Soc Civil Eng 31(8):04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783

    Article  CAS  Google Scholar 

  8. Premarathna W, Jayasinghe J, Wijesundara KK, Gamage P, Ranatunga RRMSK, Senanayake CD (2021) Investigation of design and performance improvements on solid resilient tires through numerical simulation. Eng Fail Anal 128:105618. https://doi.org/10.1016/j.engfailanal.2021.105618

    Article  Google Scholar 

  9. Lai D, Demartino C, Xiao Y (2022) High-strain rate compressive behavior of fiber-reinforced rubberized concrete. Constr Build Mater 319:125739. https://doi.org/10.1016/j.conbuildmat.2021.125739

    Article  CAS  Google Scholar 

  10. Mendis ASM, Al-Deen S, Ashraf M (2018) Flexural shear behaviour of reinforced Crumbed Rubber Concrete beam. Constr Build Mater 166:779–791. https://doi.org/10.1016/j.conbuildmat.2018.01.150

    Article  Google Scholar 

  11. He H, Zheng Q, Zhang Y, Chen J, Zhang L, Li F (2022) A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Nano Mater Sci 4:64–82. https://doi.org/10.1016/j.nanoms.2021.07.003

    Article  CAS  Google Scholar 

  12. Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Phi Trans Royal Soc London Series A 243(865):251–288. https://doi.org/10.1098/rsta.1951.0004

    Article  Google Scholar 

  13. Mooney M (1940) A theory of large elastic deformation. Appl Phys 11(9):582. https://doi.org/10.1063/1.1712836

    Article  Google Scholar 

  14. Rivlin RS (1948) Large elastic deformations of isotropic materials. IV. Further developments of the general theory Philosophical Transactions of the Royal Society A. Math Phys Sci 241(835):379–397. https://doi.org/10.1098/rsta.1948.0024

    Article  Google Scholar 

  15. Ogden RW (1972) Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A. Math Phys Sci 326(1567):565–584. https://doi.org/10.1098/rspa.1972.0026

    Article  CAS  Google Scholar 

  16. Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem Technol 66(5):754–771. https://doi.org/10.5254/1.3538343

    Article  CAS  Google Scholar 

  17. Li C, Ding Y, Yang Z, Yuan Z, Ye L (2020) Compressive stress-thermo oxidative ageing behaviour and mechanism of EPDM rubber gaskets for sealing resilience assessment. Polym Testing 84:106366. https://doi.org/10.1016/j.polymertesting.2020.106366

    Article  CAS  Google Scholar 

  18. Pourmanda P, Hedenqvista MS, Furó I, Geddea UW (2017) Deterioration of highly filled EPDM rubber by thermal ageing in air: Kinetics and non-destructive monitoring. Polym Testing 64:267–276. https://doi.org/10.1016/j.polymertesting.2017.10.019

    Article  CAS  Google Scholar 

  19. Redline EM, Celina MC, Harris CE, Giron NH, Sugama T, Pyatina T (2017) Anomalous aging of EPDM and FEPM under combined thermooxidative and hydrolytic states. Polym Degrad Stab 146:317–326. https://doi.org/10.1016/j.polymdegradstab.2017.09.010

    Article  CAS  Google Scholar 

  20. Wang Z, Shen S, Zhou A, Xu Y (2020) Experimental evaluation of aging characteristics of EPDM as a Sealant for Undersea Shield Tunnels. J Mater Civ Eng 32(7):04020182. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003242

    Article  Google Scholar 

  21. LeGac PY, LeSaux V, Paris M, Marco Y (2012) Ageing mechanism and mechanical degradation behaviour of polychloroprene rubber in a marine environment: Comparison of accelerated ageing and long-term exposure. Polym Degrad Stab 97:288–296. https://doi.org/10.1016/j.polymdegradstab.2011.12.015

    Article  CAS  Google Scholar 

  22. Du Y, Zheng J, Yu G (2021) Storage life prediction under pre-strained thermally-accelerated aging of HTPB coating using the change of crosslinking density. Def Technol 17:1387–1394. https://doi.org/10.1016/j.dt.2020.07.008

    Article  Google Scholar 

  23. Zhou W, Zhao M, Liu B, Ma Y, Zhang Y, Wang X (2021) Investigation of hydroxyl-terminated polybutadiene propellant breaking characteristics and mechanism impacted by subjected cavitation water jet. Def Technol 397:117021. https://doi.org/10.1016/j.powtec.2021.11.065

    Article  CAS  Google Scholar 

  24. Zhao F, Bi W, Zhao S (2011) Influence of crosslink density on mechanical properties of natural rubber vulcanizates. J Macromol Sci Part B Phys 50(7):1460–1469. https://doi.org/10.1080/00222348.2010.507453

    Article  CAS  Google Scholar 

  25. Chen G, Gupta A, Mekonnen TH (2022) Silane-modified wood fiber filled EPDM bio-composites with improved thermomechanical properties. Compos A 159:107029. https://doi.org/10.1016/j.compositesa.2022.107029

    Article  Google Scholar 

  26. Du Y, Zheng J, Xiong C (2020) Cross-linking density and aging constitutive model of HTPB coating under prestrain thermal accelerated aging. Def Technol 16:439–446. https://doi.org/10.1016/j.dt.2019.07.007

    Article  Google Scholar 

  27. Logan SR (1982) The origin and status of the Arrhenius equation. J Chem Educ 59:279–281. https://doi.org/10.1021/ed059p279

    Article  CAS  Google Scholar 

  28. Shi C, Cao C, Lei M, Peng L, Shen J (2015) Time-dependent performance and constitutive model of EPDM rubber gasket used for tunnel segment joints. Tunn Undergr Space Technol 50:490–498. https://doi.org/10.1016/j.tust.2015.09.004

    Article  Google Scholar 

  29. Zhu Z, Jiang C, Cheng Q, Zhang J, Guo S, Xiong Y, Fu B, Yang W, Jiang H (2015) Accelerated aging test of hydrogenated nitrile butadiene rubber using the time-temperature-strain superposition principle. RSC Adv 5:90178–90183. https://doi.org/10.1039/C5RA18528A

    Article  CAS  Google Scholar 

  30. Wang S, Xu J, Li H, Liu J, Zhou C (2022) The effect of thermal aging on the mechanical properties of ethylene propylene diene monomer charge coating. Mech Time-Dependent Mater 7:1–16. https://doi.org/10.1007/s11043-022-09557-w

    Article  CAS  Google Scholar 

  31. Wang S, Zhou C, Han C (2023) The aging property and storage life prediction of EPDM. J Phys: Conf Ser 2478:032046. https://doi.org/10.1088/1742-6596/2478/3/032046

    Article  Google Scholar 

  32. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  33. Nah C, Lee GB, Lim JY, Kim YH, SenGupta R, Gent AN (2010) Problems in determining the elastic strain energy function for rubber. Int J Non-Linear Mech 45:232–235. https://doi.org/10.1016/j.ijnonlinmec.2009.11.004

    Article  Google Scholar 

  34. Horgan CO, Murphy JG (2009) Compression tests and constitutive models for the slight compressibility of elastic rubber-like materials. Int J Eng Sci 47:1232–1239. https://doi.org/10.1016/j.ijengsci.2008.10.009

    Article  Google Scholar 

  35. Khajehsaeid H, Arghavani J, Naghdabadi R (2013) A hyperelastic constitutive model for rubber-like materials. Euro J Mech A/Solids 38:144–151. https://doi.org/10.1016/j.euromechsol.2012.09.010

    Article  Google Scholar 

  36. Kommling A, Jaunich M, Wolff D (2016) Effects of heterogeneous aging in compressed HNBR and EPDM O-ring seals. Polym Degrad Stab 126:39–46. https://doi.org/10.1016/j.polymdegradstab.2016.01.012

    Article  CAS  Google Scholar 

  37. Dong L, Li K, Zhu X, Li Z, Zhang D, Pan Y, Chen X (2020) Study on high temperature sealing behavior of packer rubber tube based on thermal aging experiments. Eng Fail Anal 108:104321. https://doi.org/10.1016/j.engfailanal.2019.104321

    Article  Google Scholar 

  38. Liu J, Li X, Xu L, He T (2017) Service lifetime estimation of EPDM rubber based on accelerated aging tests. J Mater Eng Perform 26(4):1735. https://doi.org/10.1007/s11665-017-2519-8

    Article  CAS  Google Scholar 

  39. Song B, Chen W (2004) Dynamic compressive behavior of EPDM rubber under nearly Uniaxial Strain States. J Eng Mater Technol 126(2):213. https://doi.org/10.1115/1.1651097

    Article  CAS  Google Scholar 

  40. Mao Y, Li Y, Chen Y, Miao Y, Deng Q, Niu W (2015) Hyper-elastic behavior of two rubber materials under quasistatic and dynamic compressive loadings —testing, modeling and application. Polimery 60:7–8. https://doi.org/10.14314/polimery.2015.516

    Article  Google Scholar 

  41. Jiang J, Xu J, Zhang Z, Chen X (2016) Rate-dependent compressive behavior of EPDM insulation: Experimental and constitutive analysis. Mech Mater 96:30–38. https://doi.org/10.1016/j.mechmat.2016.02.003

    Article  Google Scholar 

  42. Shergold OA, Fleck NA, Radford D (2006) The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int J Impact Eng 32:1384–1402. https://doi.org/10.1016/j.ijimpeng.2004.11.010

    Article  Google Scholar 

  43. Ghorbanoghli A, Narooei K (2019) A new hyper-viscoelastic model for investigating rate dependent mechanical behavior of dual cross link self-healing hydrogel. Int J Mech Sci 159:278–286. https://doi.org/10.1016/j.ijmecsci.2019.06.019

    Article  Google Scholar 

  44. Kommling A, Jaunich M, Wolff D (2016) Revealing effects of chain scission during ageing of EPDM rubber using relaxation and recovery experiment. Polym Testing 56:261–268. https://doi.org/10.1016/j.polymertesting.2016.10.026

    Article  CAS  Google Scholar 

  45. Liao Z, Yao X, Zhang L, Hossain M, Wang J, Zhang S (2019) Temperature and strain rate dependent large tensile deformation and tensile failure behavior of transparent polyurethane at intermediate strain rates. Int J Impact Eng 129:152–167. https://doi.org/10.1016/j.ijimpeng.2019.03.005

    Article  Google Scholar 

Download references

Funding

This work is supported by National Key R&D Program of China (Grant No.2022YFB3401901) and Sichuan Science and Technology Program (Grant Nos.2023NSFSC0394 and 2023NSFSC1988).

Author information

Authors and Affiliations

Authors

Contributions

Zhanjiang W. designed the research; Xiaoyang W. prepared all figures and prepared the initial draft of the manuscript; Xiaoyang W. and Dianjie J. carried out the experiments; and Xiaoyang W., Zhanjiang W., and Dianjie J. contributed to the analysis of the results, reviewing the manuscript, and revising the manuscript.

Corresponding author

Correspondence to Zhanjiang Wang.

Ethics declarations

Ethical approval

Not applicable. The results published in this article did not involve the study of humans or animals.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, Z. & Jiang, D. A rate-dependent aging constitutive model of EPDM rubber. Colloid Polym Sci (2024). https://doi.org/10.1007/s00396-024-05250-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00396-024-05250-1

Keywords

Navigation