Skip to main content
Log in

Using a solvent-induced self-assembly approach to fabricate and tune the organogels and hydrogels

  • Research
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In the present work, stable organogels and hydrogels could be formed by dimeric-dehydrocholic acid derivative (DDAD) in different solvents. Compared with the organogels, the hydrogels formed by DDAD were found to be thermal reversible and had higher gel-to-solution transition temperature. The supramolecular structures in the organogels and hydrogels were further studied by using transmission electron microscopy (TEM) and atomic force microscopy (AFM). TEM and AFM images of the supramolecular gels showed that the solvent effects played a crucial role in morphological structures. Specifically, the organogel had a three-dimensional porous network structure. While, the hydrogel had a supramolecular structure made up of long fibers. Fourier transformation infrared spectroscopy (FT-IR) showed that multiple hydrogen bonds among the gelator molecules were the main driving forces in gel formation. On this base, the solvent effects on the gelation abilities and thermal stability were discussed. Thus, the present study provides a solvent-induced self-assembly approach and contributes substantially to the development of the supramolecular gels as soft materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

All data generated or analyzed during this study are included in this article.

References

  1. Steed JW (2010) Anion-tuned supramolecular gels: a natural evolution from urea supramolecular chemistry. Chem Soc Rev 39:3686–3699. https://doi.org/10.1039/B926219A

    Article  CAS  PubMed  Google Scholar 

  2. Jungst T, Smolan W, Schacht K, Scheibel T, Groll J (2016) Strategies and molecular design criteria for 3D printable hydrogels. Chem Rev 116:1496–1539. https://doi.org/10.1021/acs.chemrev.5b00303

    Article  CAS  PubMed  Google Scholar 

  3. Narayana YSLV, Chandrasekar R (2011) Triple emission from organic/inorganic hybrid nanovesicles in a single excitation. ChemPhysChem 12:2391–2396. https://doi.org/10.1002/cphc.201100426

    Article  CAS  PubMed  Google Scholar 

  4. Lorenzo MLD, Cocca M, Gentile G, Avella M, Gutierrez D, Pirriera MD, Kennedy M, Ahmed H, Doran J (2013) Thermoreversible luminescent organogels doped with Eu(TTA)3phen complex. J Colloid Interface Sci 398:95–102. https://doi.org/10.1016/j.jcis.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  5. Xiao TX, Wang LY (2018) Recent advances of functional gels controlled by pillar[n]arene-based host-guest interactions. Tetrahedron Lett 59:1172–1182. https://doi.org/10.1016/j.tetlet.2018.02.028

    Article  CAS  Google Scholar 

  6. Li F, Palaniswamy G, de Jong MR, Åslund A, Konradsson P, Marcelis ATM, Sudhölter EJR, Cohen Stuart MA, Leermakers FAM (2010) Nanowires formed by the co-assembly of a negatively charged low-molecular weight gelator and a zwitterionic polythiophene. ChemPhysChem 11:1956–1960. https://doi.org/10.1002/cphc.200900946

  7. Mallia VA, Samai S, Weiss RG (2016) Cholesterol and dihydrocholesterol are simple steroidal molecular gelators: how one double bond controls the structure and mechanotropic properties of their gels. ChemistrySelect 1:4965–4972. https://doi.org/10.1002/slct.201601012

    Article  Google Scholar 

  8. de Fávere VT, Hinze WL (2009) Evaluation of the potential of chitosan hydrogels to extract polar organic species from nonpolar organic solvents: application to the extraction of aminopyridines from hexane. J Colloid Interface Sci 330:38–44. https://doi.org/10.1016/j.jcis.2008.10.035

    Article  CAS  PubMed  Google Scholar 

  9. Yang HK, Zhao H, Yang PR, Huang CH (2017) How do molecular structures affect gelation properties of supramolecular gels? Insights from low-molecular-weight gelators with different aromatic cores and alkyl chain lengths. Colloids Surf A Physicochem Eng Asp 535:242–250. https://doi.org/10.1016/j.colsurfa.2017.09.044

    Article  CAS  Google Scholar 

  10. Li Q, Li RH, Lan HC, Lu YX, Li YQ, Xiao SZ, Yi T (2017) Halogen effect on non-conventional organogel assisted by balanced π-π interaction. ChemistrySelect 2:5421–5426. https://doi.org/10.1002/slct.201700760

    Article  CAS  Google Scholar 

  11. Krishnan BP, Sureshan KM (2016) A molecular-level study of metamorphosis and strengthening of gels by spontaneous polymorphic transitions. ChemPhysChem 17:3062–3067. https://doi.org/10.1002/cphc.201600590

    Article  CAS  PubMed  Google Scholar 

  12. Kim DJ, Kwon JE, Park SK (2018) Fully reversible multistate fluorescence switching: organogel system consisting of luminescent cyanostilbene and turn-on diarylethene. Adv Funct Mater 28:1706213. https://doi.org/10.1002/adfm.201706213

  13. Chang DD, Yan WH, Han D, Wang QC, Zou L (2018) A photo-switchable dual-modality linear supramolecular polymer based on host-guest interaction of cyclodextrin and pseudorotaxane. Dyes Pigm 149:188–192. https://doi.org/10.1016/j.dyepig.2017.09.064

    Article  CAS  Google Scholar 

  14. Sahoo JK, Braegelman AS, Webber MJ (2018) Immunoengineering with supramolecular peptide biomaterials. J Indian Inst Sci 98:69–79. https://doi.org/10.1007/s41745-018-0060-x

    Article  Google Scholar 

  15. Sahoo JK, Nazareth C, VandenBerga MA, Webber MJ (2017) Self-assembly of amphiphilic tripeptides with sequence-dependent nanostructure. Biomater Sci 5:1526–1530. https://doi.org/10.1039/C7BM00304H

    Article  CAS  PubMed  Google Scholar 

  16. You D, Min XY, Liu LL, Ren Z, Xiao X, Pavlostathis SG, Luo JM, Luo XB (2018) New insight on the adsorption capacity of metallogels for antimonite and antimonate removal: from experimental to theoretical study. J Hazard Mater 346:218–225. https://doi.org/10.1016/j.jhazmat.2017.12.035

    Article  CAS  PubMed  Google Scholar 

  17. Gao F, Sheng Y, Song YH, Zou HF (2018) Sol-gel synthesis of silica composited flower-like microspheres using trivalent europium tartrate as a template. J Solgel Sci Technol 85:470–479. https://doi.org/10.1007/s10971-017-4551-4

    Article  CAS  Google Scholar 

  18. Döring A, Birnbaum W, Kuckling D (2013) Responsive hydrogels-structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev 42:7391–7420. https://doi.org/10.1039/C3CS60031A

    Article  PubMed  Google Scholar 

  19. Yang Q, Lv J, Li PY (2018) A pH-responsive self-healing gel with crosslinking of cucurbituril (CB[n]) via hydrogen bonding. Chem Lett 47:192–195. https://doi.org/10.1246/cl.170886

    Article  CAS  Google Scholar 

  20. Zhao Q, Chen Y, Lie Y (2018) A polysaccharide/tetraphenylethylene-mediated blue-light emissive and injectable supramolecular hydrogel. Chinese Chem Lett 29:84–86. https://doi.org/10.1016/j.cclet.2017.07.024

    Article  CAS  Google Scholar 

  21. Hao L, Yegin C, Talari JV, Oh JK, Zhang M, Sari MM, Zhang LH, Min Y, Akbulut M, Jiang B (2018) Thermo-responsive gels based on supramolecular assembly of an amidoamine and citric acid. Soft Matter 14:432–439. https://doi.org/10.1039/C7SM01592E

    Article  CAS  PubMed  Google Scholar 

  22. Wang L, Hui X, Geng HM, Ye L, Zhang AY, Shao ZQ, Feng ZG (2017) Synthesis and gelation capability of mono- and disubstituted cyclo(L-Glu-L-Glu) derivatives with tyramine, tyrosine and phenylalanine. Colloid Polym Sci 295:1549–1561. https://doi.org/10.1007/s00396-017-4120-y

    Article  CAS  Google Scholar 

  23. Wang JY, Han YC (2011) Tuning the stop bands of inverse opal hydrogels with double network structure by controlling the solvent and pH. J Colloid Interface Sci 353:498–505. https://doi.org/10.1016/j.jcis.2010.10.002

    Article  CAS  PubMed  Google Scholar 

  24. Khimani M, Verma G, Kumar S, Hassan PA, Aswal VK, Bahadur P (2015) PH induced tuning of size, charge and viscoelastic behavior of aqueous micellar solution of pluronic P104-anthranilic acid mixtures: a scattering, rheology and NMR study. Colloids Surf A Physicochem Eng Asp 470:202–210. https://doi.org/10.1016/j.colsurfa.2015.01.051

    Article  CAS  Google Scholar 

  25. Wei HL, Yao K, Chu HJ, Li ZC, Zhu J, Shen YM, Zhao ZX, Feng YL (2012) Click synthesis of the thermo- and pH-sensitive hydrogels containing β-cyclodextrins. J Mater Sci 47:332–340. https://doi.org/10.1007/s10853-011-5802-3

    Article  CAS  Google Scholar 

  26. Ran X, Wang HT, Zhang P, Bai BL, Zhao CX, Yu ZX, Li M (2011) Photo-induced fiber-vesicle morphological change in an organogel based on an azophenyl hydrazide derivative. Soft Matter 7:8561–8566. https://doi.org/10.1039/C1SM05566F

    Article  CAS  Google Scholar 

  27. Wu YP, Wu S, Zou G, Zhang QJ (2011) Solvent effects on structure, photoresponse and speed of gelation of a dicholesterol-linked azobenzene organogel. Soft Matter 7:9177–9183. https://doi.org/10.1039/C1SM06240A

    Article  CAS  Google Scholar 

  28. Travaglini L, D’Annibale A, Schillén K, Olsson U, Sennato S, Pavela NV, Galantini L (2012) Amino acid-bile acid based molecules: extremely narrow surfactant nanotubes formed by a phenylalanine-substituted cholic acid. Chem Commun 48:12011–12013. https://doi.org/10.1039/C2CC36030F

    Article  CAS  Google Scholar 

  29. Cao XH, Liu X, Chen LM, Mao YY, Lan HC, Yi T (2015) Photoisomerization-induced morphology and transparency transition in an azobenzene based two-component organogel system. J Colloid Interface Sci 458:187–193. https://doi.org/10.1016/j.jcis.2015.07.047

    Article  CAS  PubMed  Google Scholar 

  30. Li ZL, Hao AY, Hao JC (2014) Formation of heat-triggered supramolecular organogel in which β-cyclodextrin as sole gelator. Colloids Surf A Physicochem Eng Asp 441:8–15. https://doi.org/10.1016/j.colsurfa.2013.08.078

    Article  CAS  Google Scholar 

  31. Wei J, Chai Q, He LH, Bai BL, Wang HT, Li M (2016) An anthracene-based organogel with colorimetric fluoride-responsive and fluorescence-enhanced properties. Tetrahedron 72:3073–3076. https://doi.org/10.1016/j.tet.2016.04.035

    Article  CAS  Google Scholar 

  32. Xing PY, Sun T, Li SY, Hao AY, Su J, Hou YH (2013) An instant-formative heat-set organogel induced by small organic molecules at a high temperature. Colloids Surf A Physicochem Eng Asp 421:44–50. https://doi.org/10.1016/j.colsurfa.2012.12.052

    Article  CAS  Google Scholar 

  33. Yang HK, Ren LJ, Wu H, Wang W (2016) Self-assembly of the polyoxometalate-cholesterol conjugate into microrods or nanoribbons regulated by thermodynamics. New J Chem 40:954–961. https://doi.org/10.1039/C5NJ02271A

    Article  CAS  Google Scholar 

  34. Liu J, Yan JL, Yuan XW, Liu KQ, Peng JX, Fang Y (2008) A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation. J Colloid Interface Sci 318:397–404. https://doi.org/10.1016/j.jcis.2007.10.005

    Article  CAS  PubMed  Google Scholar 

  35. Wang YQ, Wang ZY, Xu ZC, Yu XD, Zhao K, Li YJ, Pang XL (2016) Ultrasound-accelerated organogel: application for visual discrimination of Hg2+ from Ag+. Org Biomol Chem 14:2218–2222. https://doi.org/10.1039/C5OB02261D

    Article  CAS  PubMed  Google Scholar 

  36. Li YG, Wang TY, Liu MH (2007) Ultrasound induced formation of organogel from a glutamic dendron. Tetrahedron 63:7468–7473. https://doi.org/10.1016/j.tet.2007.02.070

    Article  CAS  Google Scholar 

  37. Adhikari B, Kraatz HB (2014) Redox-triggered changes in the self-assembly of a ferrocene-peptide conjugate. Chem Commun 50:5551–5553. https://doi.org/10.1039/C3CC49268K

    Article  CAS  Google Scholar 

  38. Delbecq F, Kaneko N, Endo H, Kawai T (2012) Solvation effects with a photoresponsive two-component 12-hydroxystearic acid-azobenzene additive organogel. J Colloid Interface Sci 384:94–98. https://doi.org/10.1016/j.jcis.2012.06.045

    Article  CAS  PubMed  Google Scholar 

  39. Xing PY, Chu XX, Li SY, Hou YH, Ma MF, Yang JS, Hao AY (2013) Self-recovering β-cyclodextrin gel controlled by good/poor solvent environments. RSC Adv 3:22087. https://doi.org/10.1039/C3RA42587H

    Article  CAS  Google Scholar 

  40. Svobodová H, Nonappa LM, Wimmer Z, Kolehmainen E (2012) A steroid-based gelator of A(LS)2 type: tuning gel properties by metal coordination. Soft Matter 8:7840. https://doi.org/10.1039/C2SM25259G

    Article  Google Scholar 

  41. Chakrabarty A, Maitra U, Das AD (2012) Metal cholate hydrogels: versatile supramolecular systems for nanoparticle embedded soft hybrid materials. J Mater Chem 22:18268. https://doi.org/10.1039/C2JM34016J

    Article  CAS  Google Scholar 

  42. Fathalla M, Strutt NL, Sampath S, Katsiev K, Hartlieb KJ, Bakr OM, Stoddart FJ (2015) Porphyrinic supramolecular daisy chains incorporating pillar[5]arene-viologen host-guest interactions. Chem Commun 51:10455–10458. https://doi.org/10.1039/C5CC03717D

    Article  CAS  Google Scholar 

  43. Wang H, Zhang JY, Zhang WP, Yang YJ (2009) Host-guest interactions of 5-fluorouracil in supramolecular organogels. Eur J Pharm Biopharm 73:357–360. https://doi.org/10.1016/j.ejpb.2009.07.005

    Article  CAS  PubMed  Google Scholar 

  44. Cao XH, Zhang MM, Liu KY, Mao YY, Lan HC, Liu B, Yi T (2012) Formation and regulation of supramolecular chirality in organogel via addition of tartaric acid. Chin Sci Bull 33:4272–4277. https://doi.org/10.1007/s11434-012-5436-0

    Article  CAS  Google Scholar 

  45. Xin FF, Zhang HC, Hao BX, Sun T, Kong L, Li YM, Hou YH, Li SY, Zhang Y, Hao AY (2012) Controllable transformation from sensitive and reversible heat-set organogel to stable gel induced by sodium acetate. Colloids Surf A Physicochem Eng Asp 410:18–22. https://doi.org/10.1016/j.colsurfa.2012.06.008

    Article  CAS  Google Scholar 

  46. Kuosmanen R, Puttreddy R, Willman RM, Äijäläinen I, Galandáková A, Ulrichová J, Salo H, Rissanen K, Sievänen E (2016) Biocompatible hydrogelators based on bile acid ethyl amides. Steroids 108:7–16. https://doi.org/10.1016/j.steroids.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  47. Svobodová H, Noponen V, Kolehmainen E, Sievänen E (2012) Recent advances in steroidal supramolecular gels. RSC Adv 2:4985. https://doi.org/10.1039/C2RA01343F

    Article  Google Scholar 

  48. Laishram R, Maitra U (2018) Bile salt-derived Eu3+ organogel and hydrogel: Water-enhanced luminescence of Eu3+ in a gel matrix. ChemistrySelect 3:519–523. https://doi.org/10.1002/slct.201701013

    Article  CAS  Google Scholar 

  49. Löfman M, Koivukorpi J, Noponen V, Salo H, Sievänen E (2011) Bile acid alkylamide derivatives as low molecular weight organogelators: systematic gelation studies and qualitative structural analysis of the systems. J Colloid Interface Sci 360:633–644. https://doi.org/10.1016/j.jcis.2011.04.112

    Article  CAS  PubMed  Google Scholar 

  50. Willemen HM, Vermonden T, Marcelis ATM, Sudhölter EJR (2002) Alkyl derivatives of cholic acid as organogelators: one-component and two-component gels. Langmuir 18:7102–7106. https://doi.org/10.1021/la025514l

    Article  CAS  Google Scholar 

  51. Maitra U, Kumar PV, Chandra N, D’Souza LJ, Prasanna MD, Raju AR (1999) First donor-acceptor interaction promoted gelation of organic fluids. Chem Commun 7:595–596. https://doi.org/10.1039/A809821B

    Article  Google Scholar 

  52. Chakrabarty A, Maitra U, Devi Das A (2012) Metal cholate hydrogels: versatile supramolecular systems for nanoparticle embedded soft hybrid materials. J Mater Chem 22:18268–18274. https://doi.org/10.1039/C2JM34016J

    Article  CAS  Google Scholar 

  53. Yang HK, Qi P, Zhao H (2018) A novel hydrogelator based on dimeric-dehydrocholic acid derivative. Colloid Polym Sci 296:1071–1078. https://doi.org/10.1007/s00396-018-4324-9

    Article  CAS  Google Scholar 

  54. Eldridge JE, Ferry JD (1954) Studies of the cross-linking process in gelatin gels. III. Dependence of melting point on concentration and molecular weight. J Phys Chem 58:992–995. https://doi.org/10.1021/j150521a013

    Article  CAS  Google Scholar 

Download references

Funding

We greatly appreciate the financial support of the Scientific and Technological Innovation Plan of Higher Education Institutions of Shanxi Province (No. 2021L609), the Fundamental Research Program of Shanxi Province (No. 202203021211102), and National Natural Science Foundation of China (No. 21802127).

Author information

Authors and Affiliations

Authors

Contributions

Ruicong Wang: funding acquisition, conceptualization, methodology, and writing original draft. Xiaoting Hao: data curation, investigation, and experiment. Haikuan Yang: funding acquisition, supervision, writing — review and editing. All authors contributed to the general discussion. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Ruicong Wang or Haikuan Yang.

Ethics declarations

Ethical approval

No human or animal subjects were used in this research.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1059 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Hao, X. & Yang, H. Using a solvent-induced self-assembly approach to fabricate and tune the organogels and hydrogels. Colloid Polym Sci 302, 163–171 (2024). https://doi.org/10.1007/s00396-023-05186-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05186-y

Keywords

Navigation