Skip to main content
Log in

SERS scaffold based on silver nanoparticles with multi-ingredient heavy metal ligands for the determination of Mn(II)

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Heavy metal ions are difficult to determine directly by surface-enhanced Raman spectroscopy (SERS) due to the lack of Raman characteristic peaks for heavy metal. Herein, a SERS platform was promoted for the determination of divalent manganese ion (Mn2+) with the properties of cost-effectiveness and simplicity. The SERS platform was constructed into a hybrid system of silver nanoparticles (AgNPs), 6-mercaptonicotinic acid (MNA), and melamine (MA). The likely principle of the SERS analysis platform for Mn2+ is that 6-mercaptonic acid cooperates with melamine to combine manganese ions to cause the aggregation of silver nanoparticles, resulting in the rapid enhancement of Raman characteristic peak signals of 6-mercaptonic acid. The established SERS platform for the Mn2+ determination obtained good linearity in the range of Mn2+ concentration of 1.0 × 10−5–1.0 × 10−4 mol/L with a limit of detection (LOD) of 4.0 × 10−6 mol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zheng X, Cheng WY, Ji CD, Zhang J, Yin MZ (2020) Detection of metal ions in biological systems: a review. Rev Anal Chem 39(1):231–246. https://doi.org/10.1515/revac-2020-0118

    Article  CAS  Google Scholar 

  2. Olana MH, Sabir FK, Bekele ET, Gonfa BA (2022) Citrus sinensis and musa acuminata peel waste extract mediated synthesis of TiO2/rGO nanocomposites for photocatalytic degradation of methylene blue under visible light irradiation. Bioinorg Chem Appl 2022:5978707–5978727. https://doi.org/10.1155/2022/5978707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meena AK, Mishra GK, Rai PK, Rajagopal C, Nagar PN (2005) Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J Hazard Mater 122(1/2):161–170. https://doi.org/10.1016/j.jhazmat.2005.03.024

    Article  CAS  PubMed  Google Scholar 

  4. Sivakumar R, Lee NY (2021) Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere 275(1):130096–130112. https://doi.org/10.1016/j.chemosphere.2021.130096

    Article  CAS  PubMed  Google Scholar 

  5. Kausar A, Bhatti HN, MacKinnon G (2016) Re-use of agricultural wastes for the removal and recovery of Zr (IV) from aqueous solutions. J Taiwan Inst Chem Eng 59:330–340. https://doi.org/10.1016/j.jtice.2015.08.016

    Article  CAS  Google Scholar 

  6. Rashid A, Bhatti HN, Iqbal M, Noreen S (2016) Fungal biomass composite with bentonite efficiency for nickel and zinc adsorption: a mechanistic study. Ecol Eng 91:459–471. https://doi.org/10.1016/j.ecoleng.2016.03.014

    Article  Google Scholar 

  7. Shilina Y, Ziv B, Meir A, Banerjee A, Ruthstein S, Luski S, Aurbach D, Halalay IC (2016) Combined electron paramagnetic resonance and atomic absorption spectroscopy/inductively coupled plasma analysis as diagnostics for soluble manganese species from Mn-based positive electrode materials in Li-ion cells. Anal Chem 88:4440–4447. https://doi.org/10.1021/acs.analchem.6b00204

    Article  CAS  PubMed  Google Scholar 

  8. Zeng CJ, Qin PP, Lan LL, Wei HS, Wu WF (2017) Chemical vapor generation coupled with atomic fluorescence spectrometry for the determination of manganese in food samples. Microchem J 131:31–35. https://doi.org/10.1016/j.microc.2016.11.010

    Article  CAS  Google Scholar 

  9. Gu YY, Hu QM, Dong YQ, Li D (2005) Analysis of average valence of manganese in MnZn ferrite. Metallurg Analy 25:52–54. https://doi.org/10.13228/j.issn.1000-7571.2005.03.014

  10. Goodwin A, Lawrence AL, Banks CE, Wantz F, Omanovic D, Komorsky-Lovri E, Compton RG (2005) On-site monitoring of trace levels of free manganese in sea water via sonoelectroanalysis using a boron-doped diamond electrode. Anal Chim Acta 533(2):141–145. https://doi.org/10.1016/j.aca.2004.11.009

    Article  CAS  Google Scholar 

  11. Cassella RJ, Reis LGTD, Santelli RE, Oliveira EP (2011) Direct determination of manganese in produced waters from petroleum exploration by electrothermal atomic absorption spectrometry using Ir–W as permanent modifier. Talanta 85(1):415–419. https://doi.org/10.1016/j.talanta.2011.03.084

    Article  CAS  PubMed  Google Scholar 

  12. Youngvises N, Suwannasaroj K, Jakmunee J, AlSuhaimi A (2017) Multi-reverse flow injection analysis integrated with multi-optical sensor for simultaneous determination of Mn (II), Fe (II), Cu (II) and Fe (III) in natural waters. Talanta 166:369–374. https://doi.org/10.1016/j.talanta.2016.01.052

    Article  CAS  PubMed  Google Scholar 

  13. Choi Y, Park Y, Kang T, Lee LP (2009) Selective and sensitive detection of metal ions by plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4(11):742–746. https://doi.org/10.1038/nnano.2009.258

    Article  CAS  PubMed  Google Scholar 

  14. Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706(1):8–24. https://doi.org/10.1016/j.aca.2011.08.020

    Article  CAS  PubMed  Google Scholar 

  15. Bao ZY, Lei DY, Dai J, Wu Y (2013) In situ and room-temperature synthesis of ultra-long Ag nanoparticles-decorated Ag molybdate nanowires as high-sensitivity SERS substrates. Appl Surf Sci 2143(12):404–410. https://doi.org/10.1016/j.apsusc.2013.09.167

    Article  CAS  Google Scholar 

  16. Wang S, Forzani ES, Tao N (2007) Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry. Anal Chem 79(12):4427–4432. https://doi.org/10.1021/ac0621773

    Article  CAS  PubMed  Google Scholar 

  17. Jianjun Du, Lin J, Qi S, Xiaogang L, Robert S (2013) Colorimetric detection of mercury ions based on plasmonic nanoparticles. Small 9(9):1467–1481. https://doi.org/10.1002/smll.201200811

    Article  CAS  Google Scholar 

  18. Hoyos SD, Sánchez-Mendieta V, Vilchis-Nestor AR, Camacho-López MA, Avalos-Borja M (2019) Plasmonic sensing of aqueous-divalent metal ions by biogenic gold nanoparticles. J Nanomater 2019:1–11. https://doi.org/10.1155/2019/9846729

    Article  CAS  Google Scholar 

  19. Wong KK, Lee CK, Low KS, Haron MJ (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50(1):23–28. https://doi.org/10.1016/S0045-6535(02)00598-2

    Article  CAS  PubMed  Google Scholar 

  20. Saravanakumar K, Hu XW, Chelliah R, Oh DH, Kathiresan K, Wang MH (2020) Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (capsicum annuum l. var. grossum (l.) sendt). Posthavest Biol Technol 160:111039–111049. https://doi.org/10.1016/j.postharvbio.2019.111039

    Article  CAS  Google Scholar 

  21. Li H, Cui Z, Han C (2009) Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sens Actuators B Chem 143(1):87–92. https://doi.org/10.1016/j.snb.2009.09.013

    Article  CAS  Google Scholar 

  22. Modi RP, Mehta VN, Kailasa SK (2014) Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ ions. Sens Actuators B Chem 195:562–571. https://doi.org/10.1016/j.snb.2014.01.059

    Article  CAS  Google Scholar 

  23. Prabhaharan M, Prabakaran AR, Gunasekaran S, Srinivasan S (2013) Molecular structure and vibrational spectroscopic investigation of melamine using DFT theory calculations. Spectrochim Acta A Mol Biomol Spectrosc 123:392–401. https://doi.org/10.1016/j.saa.2013.12.056

    Article  CAS  PubMed  Google Scholar 

  24. Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascon V (2009) Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. J Hazard Mater 163(1):213–221. https://doi.org/10.1016/j.jhazmat.2008.06.080

    Article  CAS  PubMed  Google Scholar 

  25. Tan EZ, Yin PG, Lang XF, Zhang HY, Guo L (2012) A novel surface-enhanced Raman scattering nanosensor for detecting multiple heavy metal ions based on 2-mercaptoisonicotinic acid functionalized gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 97:1007–1012. https://doi.org/10.1016/j.saa.2012.07.114

    Article  CAS  PubMed  Google Scholar 

  26. Zhou Y, Zhao H, Li C, He P, Peng WB, Yuan LF, Zeng LX, He YJ (2012) Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe. Talanta 97:331–335. https://doi.org/10.1016/j.talanta.2012.04.041

    Article  CAS  PubMed  Google Scholar 

  27. Fernando I, Zhou Y (2019) Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216:297–305. https://doi.org/10.1016/j.chemosphere.2018.10.122

    Article  CAS  PubMed  Google Scholar 

  28. Velgosova O, Mrazikova A, Marcincakova R (2016) Influence of pH on green synthesis of Ag nanoparticles. Mater Lett 180:336–339. https://doi.org/10.1016/j.matlet.2016.04.045

    Article  CAS  Google Scholar 

  29. Ma SY, Yeh YC (2015) One-step synthesis of water-soluble fluorescent copper nanoparticles for label-free detection of manganese ions. Anal Methods 7(16):6475–6478. https://doi.org/10.1039/c5ay01567g

    Article  CAS  Google Scholar 

  30. Xun LL, Qiao J, Qi L, Huang J, Cai HW (2015) Polyacrylamide-protected gold nanoparticles for the determination of manganese ions. Anal Methods 7(23):9906–9911. https://doi.org/10.1039/c5ay02483h

    Article  CAS  Google Scholar 

  31. Aravind A, Mathew B (2020) Nano layered ion imprinted polymer based electrochemical sensor and sorbent for Mn (II) ions from real samples. Pure Appl Chem 57(4):1–10. https://doi.org/10.1080/10601325.2019.1691451

    Article  CAS  Google Scholar 

  32. Liu L, Li TT, Wu M, Yu HM (2016) Determination of manganese (II) with preconcentration on almond skin and determination by flame atomic absorption spectrometry. Anal Lett 50(1):135–147. https://doi.org/10.1080/00032719.2016.1173048

    Article  CAS  Google Scholar 

  33. Manzoori JL, Amjadi M, Abulhassani J (2009) Ionic liquid-based single drop microextraction combined with electrothermal atomic absorption spectrometry for the determination of manganese in water samples. Talanta 77(4):1539–1544. https://doi.org/10.1016/j.talanta.2008.09.045

    Article  CAS  PubMed  Google Scholar 

  34. Kim KB, Park GJ, Kim H, Song EJ, Bae JM, Kim C (2014) A novel colorimetric chemosensor for multiple target ions in aqueous solution: simultaneous detection of Mn (II) and Fe (II). Inorg Chem Commun 46:237–240. https://doi.org/10.1016/j.inoche.2014.06.009

    Article  CAS  Google Scholar 

  35. Sithara R, Selvakumar P, Arun C, Anandan S, Sivashanmugam P (2017) Economical synthesis of silver nanoparticles using leaf extract of acalypha hispida and its application in the detection of Mn (II) ions. J Adv Res 8(6):561–568. https://doi.org/10.1016/j.jare.2017.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yang Q, Hartmann C, Smeyers-Verbeke J, Massart DL (1995) Method development and validation for the determination of mineral elements in food and botanical materials by capillary electrophoresis. J Chromatogr A 717(1–2):415–425. https://doi.org/10.1016/0021-9673(95)00625-X

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Anhui Province (Grant Number 2108085ME184), the Collaborative Innovation Project of Anhui Provincial Department of Education (Grant Number GXXT-2021–057), and the Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University (Grant Number 2020QDZ36).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianshe Tang or Zhi Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Tang, J., Huang, Z. et al. SERS scaffold based on silver nanoparticles with multi-ingredient heavy metal ligands for the determination of Mn(II). Colloid Polym Sci 301, 949–956 (2023). https://doi.org/10.1007/s00396-023-05116-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05116-y

Keywords

Navigation