Skip to main content
Log in

Stepwise self-assembly of bottlebrush random copolymers into uniform cylindrical structures

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Controllable self-assembly of copolymers in solutions offers an effective tool for constructing functional nanostructures. However, achieving the stepwise assembly of copolymers in solutions remains challenging. In this study, we report the fabrication of cylindrical microstructures through the stepwise self-assembly of bottlebrush random copolymers (BBRPs) in solutions. The BBRPs were synthesized via a combination of “grafting-through” and “grafting-from” strategies. The assembly of BBRPs yielded spherical micelles in a mixture of dioxane and water, which further transformed into uniform cylindrical microstructures by dialyzing the solution against water. The cylinders could be obtained within a relatively large range of parameters, such as length ratios of hydrophilic/hydrophobic blocks, volume fractions of water, and copolymer concentrations. This work provides new insights into the assembly behavior of BBRPs and the preparation of cylindrical structures for applications in such as templated synthesis of hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Pelesko JA (2007) Self assembly: the science of things that put themselves together

  2. Mendes AC, Baran ET, Reis RL, Azevedo HS (2013) Self-assembly in nature: using the principles of nature to create complex nanobiomaterials. WIREs Nanomed Nanobiotechnol 5(6):582–612. https://doi.org/10.1002/wnan.1238

    Article  CAS  Google Scholar 

  3. Wang X, Guerin G, Wang H, Wang Y, Manners I, Winnik MA (2007) Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317(5838):644–647. https://doi.org/10.1126/science.1141382

    Article  CAS  PubMed  Google Scholar 

  4. Zhou C, Hillmyer MA, Lodge TP (2012) Efficient formation of multicompartment hydrogels by stepwise self-assembly of thermoresponsive ABC triblock terpolymers. J Am Chem Soc 134(25):10365–10368. https://doi.org/10.1021/ja303841f

    Article  CAS  PubMed  Google Scholar 

  5. Feng W, Wang L, Lv Y, Liu F, Lin S (2021) Crosslinking modulated hierarchical self-assembly of rod–coil diblock copolymer patchy nanoparticles. Macromolecules 54(18):8886–8893. https://doi.org/10.1021/acs.macromol.1c01323

    Article  CAS  Google Scholar 

  6. Jin H, Zhou Y, Huang W, Yan D (2010) Polymerization-like multilevel hierarchical self-assembly of polymer vesicles into macroscopic superstructures with controlled complexity. Langmuir 26(18):14512–14519. https://doi.org/10.1021/la102963w

    Article  CAS  PubMed  Google Scholar 

  7. Gröschel AH, Müller AHE (2015) Self-assembly concepts for multicompartment nanostructures. Nanoscale 7(28):11841–11876. https://doi.org/10.1039/C5NR02448J

    Article  CAS  PubMed  Google Scholar 

  8. Gilroy JB, Gädt T, Whittell GR, Chabanne L, Mitchels JM, Richardson RM et al (2010) Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat Chem 2(7):566–570. https://doi.org/10.1038/nchem.664

    Article  CAS  PubMed  Google Scholar 

  9. Zhang K, Miao H, Chen D (2014) Water-soluble monodisperse core–shell nanorings: their tailorable preparation and interactions with oppositely charged spheres of a similar diameter. J Am Chem Soc 136(45):15933–15941. https://doi.org/10.1021/ja5099963

    Article  CAS  PubMed  Google Scholar 

  10. Zhuang Z, Jiang T, Lin J, Gao L, Yang C, Wang L et al (2016) Hierarchical nanowires synthesized by supramolecular stepwise polymerization. Angew Chem Int Ed 55(40):12522–12527. https://doi.org/10.1002/anie.201607059

    Article  CAS  Google Scholar 

  11. Pelras T, Mahon CS, Müllner M (2018) Synthesis and applications of compartmentalised molecular polymer brushes. Angew Chem Int Ed 57(24):6982–6994. https://doi.org/10.1002/anie.201711878

    Article  CAS  Google Scholar 

  12. Li Z, Tang M, Liang S, Zhang M, Biesold GM, He Y et al (2021) Bottlebrush polymers: from controlled synthesis, self-assembly, properties to applications. Prog Polym Sci 116:101387. https://doi.org/10.1016/j.progpolymsci.2021.101387

    Article  CAS  Google Scholar 

  13. Sarapas JM, Martin TB, Chremos A, Douglas JF, Beers KL (2020) Bottlebrush polymers in the melt and polyelectrolytes in solution share common structural features. Proc Natl Acad Sci 117(10):5168–5175. https://doi.org/10.1073/pnas.1916362117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liberman-Martin AL, Chu CK, Grubbs RH (2017) Application of bottlebrush block copolymers as photonic crystals. Macromol Rapid Commun 38(13):1700058. https://doi.org/10.1002/marc.201700058

    Article  CAS  Google Scholar 

  15. Patel BB, Walsh DJ, Kim DH, Kwok J, Lee B, Guironnet D et al (2020) Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution. Sci Adv 6(24):eaaz7202. https://doi.org/10.1126/sciadv.aaz7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vatankhah-Varnosfaderani M, Keith AN, Cong Y, Liang H, Rosenthal M, Sztucki M et al (2018) Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359(6383):1509–1513. https://doi.org/10.1126/science.aar5308

    Article  CAS  PubMed  Google Scholar 

  17. Self JL, Sample CS, Levi AE, Li K, Xie R, de Alaniz JR et al (2020) Dynamic bottlebrush polymer networks: self-healing in super-soft materials. J Am Chem Soc 142(16):7567–7573. https://doi.org/10.1021/jacs.0c01467

    Article  CAS  PubMed  Google Scholar 

  18. Li S, Jiang K, Wang J, Zuo C, Jo YH, He D et al (2019) Molecular brush with dense PEG side chains: design of a well-defined polymer electrolyte for lithium-ion batteries. Macromolecules 52(19):7234–7243. https://doi.org/10.1021/acs.macromol.9b01641

    Article  CAS  Google Scholar 

  19. Li S, Guo K, Chen G, Wang J, Wang Y, Zhou X et al (2022) A self-catalyzed strategy towards facile fabrication of bottlebrush polyester-based solid polymer electrolytes. Energy Storage Mater 46:461–471. https://doi.org/10.1016/j.ensm.2022.01.029

    Article  Google Scholar 

  20. Zhang T, Wang Y, Ma X, Hou C, Lv S, Jia D et al (2020) A bottlebrush-architectured dextran polyprodrug as an acidity-responsive vector for enhanced chemotherapy efficiency. Biomater Sci 8(1):473–484. https://doi.org/10.1039/C9BM01692A

    Article  CAS  PubMed  Google Scholar 

  21. Xia Y, Adibnia V, Huang R, Murschel F, Faivre J, Xie G et al (2019) Biomimetic bottlebrush polymer coatings for fabrication of ultralow fouling surfaces. Angew Chem Int Ed 58(5):1308–1314. https://doi.org/10.1002/anie.201808987

    Article  CAS  Google Scholar 

  22. Adibnia V, Olszewski M, De Crescenzo G, Matyjaszewski K, Banquy X (2020) Superlubricity of zwitterionic bottlebrush polymers in the presence of multivalent ions. J Am Chem Soc 142(35):14843–14847. https://doi.org/10.1021/jacs.0c07215

    Article  CAS  PubMed  Google Scholar 

  23. Li Z, Ma J, Lee NS, Wooley KL (2011) Dynamic cylindrical assembly of triblock copolymers by a hierarchical process of covalent and supramolecular interactions. J Am Chem Soc 133(5):1228–1231. https://doi.org/10.1021/ja109191z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Varlas S, Hua Z, Jones JR, Thomas M, Foster JC, O’Reilly RK (2020) Complementary nucleobase interactions drive the hierarchical self-assembly of core–shell bottlebrush block copolymers toward cylindrical supramolecules. Macromolecules 53(22):9747–9757. https://doi.org/10.1021/acs.macromol.0c01857

    Article  CAS  Google Scholar 

  25. Mei G, Zheng Y, Fu Y, Huo M (2022) Polymerization-induced self-assembly of random bottlebrush copolymers. Polym Chem. https://doi.org/10.1039/D2PY00858K

    Article  Google Scholar 

  26. Yang S, Zhang L, Chen Y, Tan J (2022) Combining green light-activated photoiniferter RAFT polymerization and RAFT dispersion polymerization for graft copolymer assemblies. Macromolecules. https://doi.org/10.1021/acs.macromol.2c01529

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Yang Z, Xu J, Ahmad M, Zhang H, Zhang A et al (2019) Surface microstructure regulation of porous polymer microspheres by volume contraction of phase separation process in traditional suspension polymerization system. Macromol Rapid Commun 40(17):1800768. https://doi.org/10.1002/marc.201800768

    Article  CAS  Google Scholar 

  28. Neal TJ, Beattie DL, Byard SJ, Smith GN, Murray MW, Williams NSJ et al (2018) Self-assembly of amphiphilic statistical copolymers and their aqueous rheological properties. Macromolecules 51(4):1474–1487. https://doi.org/10.1021/acs.macromol.7b02134

    Article  CAS  Google Scholar 

  29. Zhang L, Eisenberg A (1999) Thermodynamic vs kinetic aspects in the formation and morphological transitions of crew-cut aggregates produced by self-assembly of polystyrene-b-poly(acrylic acid) block copolymers in dilute solution. Macromolecules 32(7):2239–2249. https://doi.org/10.1021/ma981039f

    Article  CAS  Google Scholar 

  30. Foster JC, Varlas S, Couturaud B, Coe Z, O’Reilly RK (2019) Getting into shape: reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. J Am Chem Soc 141(7):2742–2753. https://doi.org/10.1021/jacs.8b08648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Qu SW, Wang K, Khan H, Xiong WF, Zhang WQ (2019) Synthesis of block copolymer nano-assemblies via Icar ATRP and RAFT dispersion polymerization: how ATRP and RAFT lead to differences. Polym Chem 10(9):1150–1157. https://doi.org/10.1039/c8py01799a

    Article  CAS  Google Scholar 

  32. Schacher FH, Freier U, Steiniger F (2012) Hierarchical self-assembly of star-shaped organometallic crystallinE-coil Block copolymers in solution. Soft Matter 8(26):6968–6978. https://doi.org/10.1039/C2SM25245G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Innovation Program of the Shanghai Municipal Education Commission and the National Natural Science Foundation of China.

Funding

This work was financially supported by the Innovation Program of the Shanghai Municipal Education Commission (2021–01-07–00- 48207-E00073) and the National Natural Science Foundation of China (grant 52125308, 91963107, 51973038, 52003054).

Author information

Authors and Affiliations

Authors

Contributions

This work was performed by Zhiyuan Lin under the guidance of Yutao Sang and Zhihong Nie.

Corresponding authors

Correspondence to Yutao Sang or Zhihong Nie.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 7124 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Sang, Y. & Nie, Z. Stepwise self-assembly of bottlebrush random copolymers into uniform cylindrical structures. Colloid Polym Sci 301, 1021–1028 (2023). https://doi.org/10.1007/s00396-023-05115-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05115-z

Keywords

Navigation