Skip to main content
Log in

Co-micellization conduct and structural dynamics of block copolymers in water and salt solution environment for drug solubilization enhancement

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The present study examines the co-micellization in different block copolymers (BCPs): P123 and F127 (with almost similar hydrophobic PO block but different hydrophilic %EO content). In varying concentration and in presence of NaCl, these BCP solutions in single and mix system displayed a variety of phases, i.e., blue point (BP), thermoreversible gel formation and cloud point (CP) with a noticeable sol–gel phase transition shift. The nanoscale micellar size distribution expressed as hydrodynamic diameter (Dh) was evaluated using dynamic light scattering (DLS). As F127 is larger than P123 and contains more EO groups, the micelle corona appears larger with greater Dh. The scattering profile from small-angle x-ray scattering (SAXS) offered information into the micellar dimensions employing SasView 4.2.2 program. The quercetin (QCT) solubilization articulated in encapsulation efficiency (EE%) and drug loading (DL%) followed the enhancement order: P123 > (P123 + F127) > F127 which was inferred from spectral and microscopy study.

Graphical Abstract

5%w/v Pluronics® (P123 and F127) in single (pure) and mix environment depicting their micellar dimensions obtained from SAXS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Bharatiya B, Ghosh G, Aswal V, Bahadur P (2010) Effect of n-Hexanol and n-Hexylamine on the micellar solutions of Pluronic F127 and P123 in water and 1M NaCl. J Disper Sci Technol 31:660–667

    Article  CAS  Google Scholar 

  2. Lee C, Yang C, Lin T, Bahadur P, Chen L (2019) Role of molecular weight and hydrophobicity of amphiphilic tri-block copolymers in temperature-dependent co-micellization process and drug solubility. Colloids Surf B 183:110461–110469

    Article  CAS  Google Scholar 

  3. Barry N, Pitto-Barry A, Romero-Canelón I, Tran J, Soldevila-Barreda J, Hands-Portman I, Smith C, Kirby N, Dove A, O’Reilly R, Sadler P (2014) Precious metal carborane polymer nanoparticles: characterisation of micellar formulations and anticancer activity. Faraday Discuss 175:229–240

    Article  CAS  PubMed  Google Scholar 

  4. Chat O, Nazir N, Bhat P, Hassan P, Aswal V, Dar A (2018) Aggregation and rheological behavior of the Lavender oil- Pluronic P123 microemulsions in water-ethanol mixed solvents. Langmuir 34(3):1010–1019

    Article  CAS  PubMed  Google Scholar 

  5. Rakshit S, Sarkar A, Bhattacharya S (2017) A differential approach towards understanding the enhance demission induced superior bio-imaging and cytotoxicity within block copolymeric nanomicelles. Colloids Surf B 155:390–398

    Article  CAS  Google Scholar 

  6. Thanitwatthanasak S, Sagis L, Chitprasert P (2019) Pluronic F127/Pluronic P123/vitamin E TPGS mixed micelles for oral delivery of mangiferin and quercetin: mixture-design optimization, micellization, and solubilization behavior. J Mol Liq 274(223–238):6

    Google Scholar 

  7. Elisseeva O, Besseling N, Koopal L, Stuart M (2005) Influence of NaCl on the behavior of PEO-PPO-PEO triblock copolymers in solution, at interfaces, and in asymmetric liquid films. Langmuir 21:4954–4963

    Article  CAS  PubMed  Google Scholar 

  8. Desai P, Jain N, Sharma R, Bahadur P (2001) Effect of additives on the micellization of PEO: PPO: PEO block copolymer F127 in aqueous solution. Colloids Surf A Physicochem Eng 178:57–69

    Article  CAS  Google Scholar 

  9. Dey J, Kumar S, Nath S, Ganguly R, Aswal V, Ismail K (2014) Additive induced core and corona specific dehydration and ensuing growth and interaction of Pluronic F127 micelles. J Colloid Interface Sci 415:95–102

    Article  CAS  PubMed  Google Scholar 

  10. Branca C, Angelo G (2019) Aggregation behavior of pluronic F127 solutions in presence of chitosan/clay nanocomposites examined by dynamic light scattering. J Colloid Interface Sci 542:289–295

    Article  CAS  PubMed  Google Scholar 

  11. Castelletto V, Parras P, Hamley I (2007) Wormlike micelle formation and flow alignment of a pluronic block copolymer in aqueous solution. Langmuir 23:6896–6902

    Article  CAS  PubMed  Google Scholar 

  12. Kulthe S, Inamdar N, Choudhari Y, Shirolikar S, Borde L, Mourya V (2011) Mixed micelle formation with hydrophobic and hydrophilic Pluronic block copolymers: implications for controlled and targeted drug delivery. Colloids Surf B 88:691–696

    Article  CAS  Google Scholar 

  13. Chaibundit C, Ricardo N, Costa F, Yeates S, Booth C (2007) Micellization and gelation of mixed copolymers P123 and F127 in aqueous solution. Langmuir 23(18):9229–9236

    Article  CAS  PubMed  Google Scholar 

  14. Lin T, Wang W, Zeng X, Lu X, Shih P (2022) Preparation, structural characterization of anti-cancer drugs-mediated self-assembly from the pluronic copolymers through synchrotron SAXS investigation. Materials 15:5387–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang W, Shi Y, Chen Y, Ye J, Sha X, Fang X (2011) Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 32:2894–2906

    Article  CAS  PubMed  Google Scholar 

  16. Patel D, Patel D, Ray D, Kuperkar K, Aswal V, Bahadur P (2021) Single and mixed Pluronics® micelles with solubilized hydrophobic additives: underscoring the aqueous solution demeanor and micellar transition. J Mol Liq 343:117625–117637

    Article  CAS  Google Scholar 

  17. Patel D, Ray D, Aswal V, Kuperkar K, Bahadur P (2022) Micellar assembly leading to structural growth/transition in normal and reverse Tetronics® in single and mixed solution environment. Soft Matter 18:4543–4553

    Article  CAS  PubMed  Google Scholar 

  18. Singh V, Khullar P, Dave P, Kaur N (2013) Micelles, mixed micelles, and applications of polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers. Int J Ind Chem 4(12):1–18

    CAS  Google Scholar 

  19. Castro R, Casadei B, Santana B, Lotierzo M, Oliveira N, Malheiros B, Mariani P, Kaminski R, Barbosa L (2019) SCryPTA: a web-based platform for analyzing small-angle scattering curves of lyotropic liquid crystals. bioRxiv. 79:1–17

    Google Scholar 

  20. JanssonSchillén JK, Nilsson M, Söderman O, Fritz G, Bergmann A, Glatter O (2005) O Small-angle X-ray scattering, light scattering, and NMR study of PEO-PPO-PEO triblock copolymer/cationic surfactant complexes in aqueous solution. J Phys Chem B 109:7073–7083

    Article  Google Scholar 

  21. Ruthstein S, Raitsimring A, Bitton R, Frydman V, Godte A, Goldfar D (2009) Distribution of guest molecules in Pluronic micelles studied by double electron-electron spin resonance and small angle X-ray scattering. Phys Chem Chem Phys 11:148–160

    Article  CAS  PubMed  Google Scholar 

  22. Park M, Char K, Kim H, Lee C, Seong B, Han Y (2002) Phase behavior of a PEO-PPO-PEO triblock copolymer in aqueous solutions: two gelation mechanisms. Macromol Res 6(10):325–331

    Article  Google Scholar 

  23. Artzner F, Geiger S, Olivier A, Allais C, Finet S, Agnely F (2007) Interactions between poloxamers in aqueous solutions: micellization and gelation studied by differential scanning calorimetry, small angle X-ray scattering, and rheology. Langmuir 23(9):5085–5092

    Article  CAS  PubMed  Google Scholar 

  24. Lee C, Yang C, Lin T, Bahadur P, Chen L (2019) Role of molecular weight and hydrophobicity of amphiphilic tri-block copolymers in temperature-dependent co-micellization process and drug solubility. Colloid Surface B 183:110461–110470

    Article  CAS  Google Scholar 

  25. Wu Y, Sprik R, Poon W, Eiser E (2006) Effect of salt on the phase behaviour of F68 triblock PEO/PPO/PEO copolymer. J Phys Condens Matter 18:4461

    Article  CAS  Google Scholar 

  26. Jiang J, Li C, Lombardi J, Colby R, Rigas B, Rafailovich M, Sokolov J (2008) The effect of physiologically relevant additives on the rheological properties of concentrated Pluronic copolymer gels. Polymer 49:3561–3567

    Article  CAS  Google Scholar 

  27. Wu G, Liu L, Buu V, Chu B, Schneider D (1996) SANS and SAXS studies of Pluronic L64 in concentrated solution. Phys A Stat Mech Appl 231:73–81

    Article  CAS  Google Scholar 

  28. Bogomolova A, Hruby M, Panek J, Rabyk M, Turner S, Bals S, Steinhart M, Zhigunov A, Sedlacek O, Stepanek P, Filippov S (2013) Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties. J Appl Cryst 46:1690–1698

    Article  CAS  Google Scholar 

  29. Liu Z, Liu D, Wang L, Zhang J, Zhang N (2011) Docetaxel-loaded Pluronic P123 polymeric micelles: in vitro and in vivo evaluation. Int J Mol Sci 12:1684–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Li L, Dong H, Cai X, Ren T (2013) Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery. Mater Sci Eng C 33:2698–2707

    Article  CAS  Google Scholar 

  31. Batsberg W, Ndoni S, Trandum C, Hvidt S (2004) Effects of poloxamer inhomogeneities on micellization in water. Macromolecules 37:2965–2971

    Article  CAS  Google Scholar 

  32. Alexandridis P, Holzwarth J, Hatton T (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethy1ene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425

    Article  CAS  Google Scholar 

  33. Yallapu M, Jaggi M, Chauhan S (2013) Curcumin nanomedicine: a road to cancer therapeutics. Curr Pharm Des 19:1994–2010

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Singla P, Singh O, Chabba S, Mahajan R (2018) Pluronic-SAILs (surface active ionic liquids) mixed micelles as efficient hydrophobic quercetin drug carriers. J Mol Liq 249:294–303

    Article  CAS  Google Scholar 

  35. Patel D, Rathod S, Tiwari S, Ray D, Kuperkar K, Aswal V, Bahadur P (2020) Self-association in EO–BO–EO triblock copolymers as a nanocarrier template for sustainable release of anticancer drugs. Phys Chem B 124(51):11750–11761

    Article  CAS  Google Scholar 

  36. Patidar P, Pillai S, Bahadur P, Bahadur A (2017) Tuning the self-assembly of EO-PO block copolymers and quercetin solubilization in the presence of some common pharmaceutical excipients: a comparative study on a linear triblock and a starblock copolymer. J Mol Liq 241:511–519

    Article  CAS  Google Scholar 

  37. Fraile M, Buratto R, Gómez B, Martín Á, Cocero M (2014) Enhanced delivery of quercetin by encapsulation in poloxamers by supercritical antisolvent process. Ind Eng Chem Res 53:4318–4327

    Article  CAS  Google Scholar 

  38. Lévai G, Martín Á, Paz E, Rodríguez-Rojo S, Cocero M (2015) Production of stabilized quercetin aqueous suspensions by supercritical fluid extraction of emulsions. J Supercrit Fluids 100:34–45

    Article  Google Scholar 

  39. Lu Z, Bu C, Hu W, Zhang H, Liu M, Lu M, Zhai G (2018) Preparation and in vitro and in vivo evaluation of quercetin-loaded mixed micelles for oral delivery. Biosci Biotechnol Biochem 82(2):238–246

    Article  CAS  PubMed  Google Scholar 

  40. Parmar A, Bahadur A, Kuperkar K, Bahadur P (2013) PEO–PPO based star-block copolymer T904 as pH responsive nanocarriers for quercetin: solubilization and release study. Eur Polym J 49:12–21

    Article  CAS  Google Scholar 

  41. Fujimori M, Kadota K, Shimono K, Shirakawa Y, Sato H, Tozuka Y (2015) Enhanced solubility of quercetin by forming composite particles with trans glycosylated materials. J Food Eng 149:248–254

    Article  CAS  Google Scholar 

  42. Riva A, Ronchi M, Petrangolini G, Bosisio S, Allegrini P (2019) Improved oral absorption of quercetin from Quercetin Phytosome®, a new delivery system based on food grade lecithin. Eur J Drug Metab 44:169–177

    Article  CAS  Google Scholar 

  43. Patel D, Jana R, Lin M, Kuperkar K, Seth D, Chen L, Bahadur P (2021) Revisiting the salt-triggered self-assembly in very hydrophilic triblock copolymer Pluronic® F88 using multitechnique approach. Colloid Polym Sci 299:1113–1126

    Article  CAS  Google Scholar 

  44. Manyanga F, Sithole A, Rivera R, Karamehmedovic N, Martin N (2016) Use of differential scanning calorimetry (DSC) to study the thermodynamics of DNA-based interactions and nucleic acid-based therapeutics. J Anal Pharm 2(2):1–12

    Google Scholar 

  45. Buckton G, Chowdhry B, Armstrong J, Leharne S, Bouwstra J, Hofland H (1992) The use of high-sensitivity differential scanning calorimetry to characterize dilute aqueous dispersions of surfactants. Int J Pharm 83:115–121

    Article  CAS  Google Scholar 

  46. Pan K, Zhong Q, Baek S (2013) Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. J Agric Food Chem 61:6036–6043

    Article  CAS  PubMed  Google Scholar 

  47. Gawali S, Zhang KS, Ray D, Basu M, Aswal V, Danino DA, Hassan P (2019) Discerning the structure factor of charged micelles in water and supercooled solvent by contrast variation X-ray scattering. Langmuir 35:9867–9877

    Article  CAS  PubMed  Google Scholar 

  48. Ganguly R, Kunwar A, Dutta B, Kumar S, Barick K, Ballal A, Aswal V, Hassan P (2017) Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: an exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloid Surface B 152:176–182

    Article  CAS  Google Scholar 

  49. Dutta B, Barick K, Verma G, Aswal V, Freilich I, Danino D, Singh B, Priyadarsini K, Hassan P (2017) PEG coated vesicles from mixtures of Pluronic P123 and L-α- phosphatidylcholine: structure, rheology and curcumin encapsulation. Phys Chem Chem Phys 19:26821–26832

    Article  CAS  PubMed  Google Scholar 

  50. Leharne S (2017) The physical chemistry of high-sensitivity differential scanning calorimetry of biopolymers. ChemTexts 3(1):1–12

    Article  CAS  PubMed  Google Scholar 

  51. Tsui H, Wang J, Hsu Y, Chen L (2010) Study of heat of micellization and phase separation or Pluronic aqueous solutions by using a high sensitivity differential scanning calorimetry. Colloid Polym Sci 288:1687–1696

    Article  CAS  Google Scholar 

  52. Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27:4145–4159

    Article  CAS  Google Scholar 

  53. Lee Y, Chung H, Yeo S, Ahn C, Lee H, Messersmith P, Park T (2010) Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter 6:977–983

    Article  CAS  Google Scholar 

  54. Lee S, Lee Y, Kim J, Park T, Ahn C (2009) A novel pH-sensitive PEG-PPG-PEG copolymer displaying a closed-loop sol–gel–sol transition. J Mater Chem 19:8198–8201

    Article  CAS  Google Scholar 

  55. López-Barrón C, Li D, Wagner N, Caplan J (2014) Triblock copolymer self-assembly in ionic liquids: effect of PEO block length on the self-assembly of PEO−PPO−PEO in ethylammonium nitrate. Macromolecules 47(21):7484–7495

    Article  Google Scholar 

  56. Chen Z, Greaves T, Caruso R, Drummond C (2014) Effect of cosolvents on the self-assembly of a non-ionic polyethylene oxide-polypropylene oxide-polyethylene oxide block copolymer in the protic ionic liquid ethylammonium nitrate. J Colloid Interface Sci 441:46–51

    Article  PubMed  Google Scholar 

  57. Albouy P, Deville S, Fulkar A, Hakouk K, Impéror-Clerc M, Klotz M, Liua Q, Marcellini M, Perez J (2017) Freezing induced self-assembly of amphiphilic molecules. Soft Matter 13:1759–1763

    Article  CAS  PubMed  Google Scholar 

  58. Golwala P, Rathod S, Patil R, Joshi A, Ray D, Aswal V, Bahadur P, Tiwari S (2020) Effect of cosurfactant addition on phase behavior and microstructure of a water dilutable microemulsion. Colloids Surf B 186:110736–110743

    Article  CAS  Google Scholar 

  59. Patel D, Ray D, Kuperkar K, Aswal V, Bahadur P (2020) Parabens induced spherical micelle to polymersome transition in thermo-responsive amphiphilic linear and star-shaped EO-PO block copolymers. J Mol Liq 316:113897–113908

    Article  CAS  Google Scholar 

  60. Patel D, Ray D, Kuperkar K, Pal H, Aswal V, Bahadur P (2019) Solubilization, micellar transition and biocidal assay of loaded antioxidants in Tetronic® 1304 micelles. Polym Int 11(69):1097–1104

    Google Scholar 

  61. Narvekar A, Gawali S, Hassan P, Jain R, Dandekar P (2020) pH dependent aggregation and conformation changes of rituximab using SAXS and its comparison with the standard regulatory approach of biophysical characterization. Int J Biol Macromol 164:3084–3097

    Article  CAS  PubMed  Google Scholar 

  62. Grishaev A, Anthis N, Clore G (2012) Contrast-matched small-angle X-ray scattering from a heavy-atom labeled protein in structure determination: application to a lead substituted calmodulin−peptide complex. J Am Chem Soc 134:14686–14689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vercelino R, Cunha T, Ferreira E, Cunha F, Ferreira S, Oliveira M (2013) Skin vasodilation and analgesic effect of a topical nitric oxide-releasing hydrogel. J Mater Sci Mater Med 24:2157–2169

    Article  CAS  PubMed  Google Scholar 

  64. Khimani M, Rao U, Bahadur P (2014) Calorimetric and scattering studies on micellization of pluronics in aqueous solutions: effect of the size of hydrophilic PEO end blocks, temperature, and added salt. J Disper Sci Technol 35:1599–1610

    Article  CAS  Google Scholar 

  65. Kubiak A, Bielan Z, Bartkowiak A, Gabała E, Piasecki A, Zalas M, Zielińska-Jurek A, Janczarek M, Siwińska-Ciesielczyk K, Jesionowski T (2020) Synthesis of titanium dioxide via surfactant- assisted microwave method for photocatalytic and dye-sensitized solar cells applications. Catalysts 10(5):586–610

    Article  CAS  Google Scholar 

  66. Lin J, Chen J, Huang S, Ko J, Wang Y, Chen T, Wang L (2009) Folic acid–Pluronic F127 magnetic nanoparticle clusters for combined targeting, diagnosis, and therapy applications. Biomaterials 30:5114–5124

    Article  CAS  PubMed  Google Scholar 

  67. Thapa R, Cazzador F, Grønlien K, Tønnesen H (2020) Effect of curcumin and cosolvents on the micellization of Pluronic F127 in aqueous solution. Colloids Surf B Biointerfaces 195:111250–111259

    Article  CAS  PubMed  Google Scholar 

  68. Li Z, Xiong X, Peng S, Chen X, Liu W, Liu C (2019) Novel floated Pluronic F127 modified liposomes for delivery of curcumin: preparation, release and cytotoxicity. J Microencapsul 3(37):220–229

    CAS  Google Scholar 

  69. Zeng Z, Peng Z, Chen L, Chen Y (2014) Facile fabrication of thermally responsive Pluronic F127-based nanocapsules for controlled release of doxorubicin hydrochloride. Colloid Polym Sci 292(7):1521–1530

    Article  CAS  Google Scholar 

  70. Layek R, Uddin M, Kim N, Lau A, Lee J (2017) Noncovalent functionalization of reduced graphene oxide with pluronic F127 and its nanocomposites with gum Arabic. Compos B Eng 128:155–163

    Article  CAS  Google Scholar 

  71. Lindman B, Medronho B, Karlström G (2016) Clouding of nonionic surfactants. Curr Opin Colloid Interface Sci 22:23–29

    Article  CAS  Google Scholar 

  72. Piazza R, Campello M, Buzzaccaro S, Sciortino F (2021) Phase behavior and microscopic dynamics of a thermosensitive gel-forming. Macromolecules 54:3897–3906

    Article  CAS  Google Scholar 

  73. Gentile L, Luca G, Antunes F, Rossi C, Ranieri G (2010) Thermogelation analysis of F127-water mixtures by physical chemistry techniques. Appl Rheol 20(5):52081–52090

    Google Scholar 

  74. Wan F, Zhang J, Lau A, Tan S, Burger C, Chu B (2008) Nanostructured copolymer gels for dsDNA separation by CE. Electrophoresis 29:4704–4713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kuperkar K, Patel D, Atanase L, Bahadur P (2022) Amphiphilic block copolymers: their structures, and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles. Polymers 14(21):4702–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Sardar Vallabhbhai National Institute of Technology (SVNIT), Gujarat, India for providing the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ketan Kuperkar.

Ethics declarations

Ethics approval

No human or animal subjects were used in this research.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D., Gawali, S.L., Kuperkar, K. et al. Co-micellization conduct and structural dynamics of block copolymers in water and salt solution environment for drug solubilization enhancement. Colloid Polym Sci 301, 919–931 (2023). https://doi.org/10.1007/s00396-023-05109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05109-x

Keywords

Navigation