Skip to main content
Log in

Porous N-doped carbon sub-microspheres with PtCu nanoparticles for efficient methanol electro-oxidation

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

We design and prepare porous N-doped carbon sub-microspheres (Por-N–C-SS) using the phenolic resin sub-microspheres as precursor and potassium hydroxide as pore forming agent by polymerization-carbonization strategy. Pt and Cu ions are impregnated on surface of Por-N–C-SS, and then PtCu/Por-N–C-SS are obtained by a facile reduction process. The as-fabricated Por-N–C-SS exhibits the spherical structure with the diameter size of 200–500 nm. And Por-N–C-SS also possesses high specific surface area of 2222 m2 g−1 and large pore volume of 1.02 cm3 g−1. Benefiting from alloy effect of highly dispersed PtCu and N-doped porous carbon architecture, PtCu/Por-N–C-SS shows excellent electrocatalytic performance toward methanol oxidation reaction with high peak current density (4661 mA cm−2 mg−1 Pt) and large Jf/Jb value (1.18), exceeding commercial Pt/C catalyst in acid media. Furthermore, PtCu/Por-N–C-SS also reveals an outstanding catalytic stability, promoting its practical application in fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43. https://doi.org/10.1038/nature11115

    Article  CAS  PubMed  Google Scholar 

  2. Xia Z, Guo S (2019) Strain engineering of metal-based nanomaterials for energy electrocatalysis. Chem Soc Rev 48(12):3265–3278. https://doi.org/10.1039/C8CS00846A

    Article  CAS  PubMed  Google Scholar 

  3. Xu D, Liu Z, Yang H, Liu Q, Zhang J, Fang J, Zou S, Sun K (2009) Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum–copper nanocubes. Angew Chem Int Ed 48(23):4217–4221. https://doi.org/10.1002/anie.200900293

    Article  CAS  Google Scholar 

  4. Cui X, Xiao P, Wang J, Zhou M, Guo W, Yang Y, He Y, Wang Z, Yang Y, Zhang Y, Lin Z (2017) Highly branched metal alloy networks with superior activities for the methanol oxidation reaction. Angew Chem Int Ed 56(16):4488–4493. https://doi.org/10.1002/anie.201701149

    Article  CAS  Google Scholar 

  5. Zhu QL, Tsumori N, Xu Q (2015) Immobilizing extremely catalytically active palladium nanoparticles to carbon nanospheres: a weakly-capping growth approach. J Am Chem Soc 137(36):11743–11748. https://doi.org/10.1021/jacs.5b06707

    Article  CAS  PubMed  Google Scholar 

  6. Tian H, Yu Y, Wang Q, Li J, Rao P, Li R, Du Y, Jia C, Luo J, Deng P, Shen Y, Tian X (2021) Recent advances in two-dimensional Pt based electrocatalysts for methanol oxidation reaction. Int J Hydrogen Energy 46(61):31202–31215. https://doi.org/10.1016/j.ijhydene.2021.07.006

    Article  CAS  Google Scholar 

  7. Chen L, Zhou L, Lu H, Zhou Y, Huang J, Wang J, Wang Y, Yuan X, Yao Y (2020) Shape-controlled synthesis of planar PtPb nanoplates for highly efficient methanol electro-oxidation reaction. Chem Commun 56(64):9138–9141. https://doi.org/10.1039/D0CC03704D

    Article  CAS  Google Scholar 

  8. Chen Y, Yang J, Yang Y, Peng Z, Li J, Mei T, Wang J, Hao M, Chen Y, Xiong W, Zhang L, Wang X (2015) A facile strategy to synthesize three-dimensional Pd@Pt core-shell nanoflowers supported on graphene nanosheets as enhanced nanoelectrocatalysts for methanol oxidation. Chem Commun 51(52):10490–10493. https://doi.org/10.1039/C5CC01803J

    Article  CAS  Google Scholar 

  9. Li S, Tian ZQ, Liu Y, Jang Z, Hasan SW, Chen X, Tsiakaras P, Shen PK (2021) Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions. Chin J Catal 42(4):648–657. https://doi.org/10.1016/S1872-2067(20)63680-4

    Article  CAS  Google Scholar 

  10. Zhang J, Li K, Zhang B (2015) Synthesis of dendritic Pt-Ni-P alloy nanoparticles with enhanced electrocatalytic properties. Chem Commun 51(60):12012–12015. https://doi.org/10.1039/C5CC04277A

    Article  CAS  Google Scholar 

  11. Zhang B, Niu Y, Xu J, Pan X, Chen C-M, Shi W, Willinger M-G, Schlogl R, Su DS (2016) Tuning the surface structure of supported PtNix bimetallic electrocatalysts for the methanol electro-oxidation reaction. Chem Commun 52(20):3927–3930. https://doi.org/10.1039/C5CC08978F

    Article  CAS  Google Scholar 

  12. Eid K, Wang H, He P, Wang K, Ahamad T, Alshehri SM, Yamauchi Y, Wang L (2015) One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 7(40):16860–16866. https://doi.org/10.1039/C5NR04557F

    Article  CAS  PubMed  Google Scholar 

  13. Xia BY, Wu HB, Wang X, Lou XW (2012) One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J Am Chem Soc 134(34):13934–13937. https://doi.org/10.1021/ja3051662

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y-X, Zhou H-J, Sun P-C, Chen T-H (2014) Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt–Cu nanocrystals catalysts. J Power Sources 245:663–670. https://doi.org/10.1016/j.jpowsour.2013.07.015

    Article  CAS  Google Scholar 

  15. Byun J, Ahn SH, Kim JJ (2020) Self-terminated electrodeposition of platinum on titanium nitride for methanol oxidation reaction in acidic electrolyte. Int J Hydrogen Energy 45(16):9603–9611. https://doi.org/10.1016/j.ijhydene.2020.01.204

    Article  CAS  Google Scholar 

  16. Musthafa OTM, Sampath S (2008) High performance platinized titanium nitride catalyst for methanoloxidation. Chem Comms (1):67–69. https://doi.org/10.1039/B715859A

    Article  Google Scholar 

  17. Liu Y, Yan H, Zhou X, Li M, Fu H (2015) Small-sized tungsten nitride particles strongly anchored on carbon nanotubes and their use as supports for Pt for methanol electro-oxidation. Chem – A Eur J 21(50):18345–18353. https://doi.org/10.1002/chem.201503150

    Article  CAS  Google Scholar 

  18. Wang P, Kottakkat T, Bron M (2015) Pt supported on nanostructured NCNTs/RGO composite electrodes for methanol electrooxidation. ChemElectroChem 2(9):1396–1402. https://doi.org/10.1002/celc.201500044

    Article  CAS  Google Scholar 

  19. Li J, Zhu Q-L, Xu Q (2015) Pd nanoparticles supported on hierarchically porous carbons derived from assembled nanoparticles of a zeolitic imidazolate framework (ZIF-8) for methanol electrooxidation. Chem Commun 51(54):10827–10830. https://doi.org/10.1039/C5CC03008K

    Article  CAS  Google Scholar 

  20. Liu Y-L, Shi C-X, Xu X-Y, Sun P-C, Chen T-H (2015) Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction. J Power Sources 283:389–396. https://doi.org/10.1016/j.jpowsour.2015.02.151

    Article  CAS  Google Scholar 

  21. Li W, Min C, Tan F, Li Z, Zhang B, Si R, Xu M, Liu W, Zhou L, Wei Q, Zhang Y, Yang X (2019) Bottom-up construction of active sites in a Cu–N4–C catalyst for highly efficient oxygen reduction reaction. ACS Nano 13(3):3177–3187. https://doi.org/10.1021/acsnano.8b08692

    Article  CAS  PubMed  Google Scholar 

  22. Wang M, Gao P, Li D, Wu X, Yang M, Li Z, Shen Y, Hu X, Liu Y, Chen Z (2022) Cu/Fe dual atoms catalysts derived from Cu-MOF for Zn-air batteries. Mater Today Energy 28:101086. https://doi.org/10.1016/j.mtener.2022.101086

  23. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review1In honour of Professor W. Vielstich on the occasion of his 75th birthday and in appreciation of his contributions to electrochemistry as well as fuel cell development.1. J Electroanal Chem 461(1):14–31. https://doi.org/10.1016/S0022-0728(98)00197-1

    Article  CAS  Google Scholar 

Download references

Funding

We would like to acknowledge the financial supports from the Natural Science Foundation of Jiangsu Province of China (BK20160982).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youlin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Qiu, T., Zhou, H. et al. Porous N-doped carbon sub-microspheres with PtCu nanoparticles for efficient methanol electro-oxidation. Colloid Polym Sci 301, 623–629 (2023). https://doi.org/10.1007/s00396-023-05098-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05098-x

Keywords

Navigation