Skip to main content
Log in

Polymorphism of self-assembled colloidal nanostructures of comblike and bottlebrush block copolymers

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Block copolymers comprising chemically different comblike or bottlebrush blocks can self-assemble in selective solvents giving rise to spherical or wormlike micelles or to polymersomes. The self-consistent field theoretical framework is used for predicting relation between the set of architectural parameters of the blocks (polymerization degrees of the main and side chains, density of grafting of the side chains to the backbone) and structural properties and morphology of the self-assembled aggregates. In particular, it is demonstrated that replacing linear blocks by architecturally symmetrical bottlebrush ones allows tuning the morphology of the self-assembled solution nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lazzari M, Lin G, Lecommandoux S (2006) Block copolymers in nanoscience. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Mai Y, Eisenberg E (2012) Self assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  PubMed  Google Scholar 

  3. Schacher FH, Rupar PA, Manners I (2012) Functional block copolymers: nanostructured materials with emerging applications. Angew Chem Int Ed 41:5969–5985

    Google Scholar 

  4. Gröschel AH, Müller AHE (2015) Self-assembly concept for multicompartment nanostructures. Nanoscale 7:11841–11876

    Article  PubMed  Google Scholar 

  5. Tritschler U, Pearce S, Gwyther J, Whittell GR, Manners I (2017) 50th anniversary perspective: Functional nanoparticles from the solution self-assembly of block copolymers. Macromolecules 50, 3439-3463

  6. Nishiyama N, Kataoka K (2006) Nanostructured devices based on block copolymer assemblies for drug delivery: designing structures for enhanced drug function. Adv Polym Sci 193:67–101

    Article  CAS  Google Scholar 

  7. Miyata K, Nishiyama N, Kataoka K (2012) Rational design of smart supramolecular assemblies for gene delivery: Chemical challenges in the creation of artificial viruses. Chem Soc Rev 41:2562–2574

    Article  CAS  PubMed  Google Scholar 

  8. Sakai-Kato K, Nishiyama N, Kozaki M et al (2015) General considerations regarding the in vitro and in vivo properties of block copolymer micelle products and their evaluation. J Control Release 210:76–83

    Article  CAS  PubMed  Google Scholar 

  9. Wurm F, Frey H (2011) Linear-dendritic block copolymers: the state of the art and exciting perspectives. Progress in Polymer Science 36:1–52

    Article  CAS  Google Scholar 

  10. Blasco E, Pinol M, Oriol L (2014) Responsive linear-dendritic block copolymers. Macromolecular Rapid Communications 35(12):1090–1115

    Article  CAS  PubMed  Google Scholar 

  11. Garcia-Juan H, Nogales A, Blasco E, Martinez JC, Sics I, Ezquerra TA, Pinol M, Oriol L (2016) Self-assembly of thermo and light responsive amphiphilic linear dendritic block copolymers. European Polymer Journal 81:621–633

    Article  CAS  Google Scholar 

  12. Mirsharghi S, Knudsen KD, Bagherifam S, Niström B, Boas U (2016) Preparation and self-assembly of amphiphilic polylysine dendrons New. J Chem 40:3597–3611

    CAS  Google Scholar 

  13. Fan X, Zhao Y, Xu W, Li L (2016) Linear-Dendritic Block Copolymer for Drug and Gene Delivery. Mater Sci Eng C 62:943–959

    Article  CAS  Google Scholar 

  14. Yu T, Liu X, Bolcato-Bellemin AL, Wang Y, Liu C, Erbacher P, Qu F, Rocchi P, Behr JP, Peng L (2012) An amphiphilic dendrimer for effective delivery of small interfering RNA and gene silencing in vitro and in vivo. Angew.Chem., Int.Ed. 51, 8606-8612

  15. Liu X, Zhou J, Yu T, Chen C, Cheng Q, Sengupta K, Huang Y, Li H, Liu C, Wang Y, Pososso P, Wang M, Cui Q, Giorgio S, Fermeglia M, Qu F, Pricl S, Shi Y, Liang Z, Rocchi P, Rossi JJ, Peng L (2014) Adaptive Amphiphilic Dendrimer-Based Nanoassemblies as Robust and Versatile siRNA Delivery Systems. Angew. Chem., Int.Ed. 126, 12016-12021

  16. Liu X, Liu C, Zhou J, Chen C, Qu F, Rossi JJ, Rocchi P, Peng L (2015) Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale 7:3867–3875

    Article  CAS  PubMed  Google Scholar 

  17. Yuan J, Müller AHE, Matyjaszewski K, Sheiko S (2012) In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.-in-Chief; Elsevier, Amsterdam.

  18. Zhang D, Dashtimoghadam E, Fahimipour F, Hu X, Li Q, Bersenev EA, Ivanov DA, Vatankhah-Varnoosfaderani M, Sheiko SS (2020) Tissue-adaptive materials with independently regulated modulus and transition temperature. Adv Mater 32:2005314

    Article  CAS  Google Scholar 

  19. Vashahi F, Martinez MR, Dashtimoghadam E, Fahimipour F, Keith AN, Bersenev EA, Ivanov DA, Zhulina EB, Popryadukhin P, Matyjaszewski K, Vatankhah-Varnosfaderani M, Sheiko SS (2022) Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Sci Adv 8, eabm2469

  20. Li T, Huang F, Diaz-Dussan D, Zhao J, Srinivas S, Narain R, Tian W, Hao X (2020) Preparation and Characterization of Thermoresponsive PEG-Based Injectable Hydrogels and Their Application for 3D Cell Culture. Biomacromolecules 21:1254–1263

    Article  CAS  PubMed  Google Scholar 

  21. de Gennes PJ (1978) Macromolecules and Liquid Crystals: Reflections on Certain Lines of Research. in Solid State Physics, Academic Press, NewYork, p. 1-17

  22. Halperin A (1987) Polymeric micelles: A star model. Macromolecules 20:2943–2946

    Article  CAS  Google Scholar 

  23. Halperin A, Alexander S (1989) Polymeric micelles: their relaxation kinetics. Macromolecules 22:2403–2412

    Article  CAS  Google Scholar 

  24. Zhulina YB, Birshtein TM (1985) Conformations of block copolymer molecules in selective solvents (micellar structures) Polym. Sci USSR 27:570–578

    Article  Google Scholar 

  25. Birshtein TM, Zhulina EB (1989) Scaling theory of supermolecular structures in block copolymer solvent systems: 1. Model of micellar structures. Polymer 30:170–177

    Article  CAS  Google Scholar 

  26. Zhulina EB, Adam M, Sheiko S, LaRue I, Rubinstein M (2005) Diblock copolymer micelles in a dilute solution. Macromolecules 38:5330

    Article  CAS  Google Scholar 

  27. Borisov OV, Zhulina EB, Leermakers FAM, Müller AHE (2011) Self-assembled structures of amphiphilic ionic block copolymers: theory, self-consistent field modelling and experiment. Adv Polym Sci 241:57–129

    Article  CAS  Google Scholar 

  28. Zhulina EB, Borisov OV (2012) Theory of block copolymer micelles: recent advances and current challenges. Macromolecules 45:4229–4240

    Article  Google Scholar 

  29. Lebedeva IO, Zhulina EB, Borisov OV (2018) Theory of Linear-Dendritic Block Copolymer Micelles. ACS Macro Letters 7:811–816

    Article  Google Scholar 

  30. Lebedeva IO, Zhulina EB, Borisov OV (2019) Self-assembly of linear-dendritic and double-dendritic block copolymers: from spherical micelles to dendrimersomes. Macromolecules 52(10):3655–3667

    Article  CAS  Google Scholar 

  31. Lebedeva IO, Zhulina EB, Borisov OV (2021) Self-assembly of Bottlebrush Block Copolymers in Selective Solvent: Micellar Structures. Polymers 13:1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhulina EB, Borisov OV (2021) Micelles Formed by AB Copolymer with Bottlebrush Blocks. Scaling Theory J Phys Chem B 125(45):12603–12616

    Article  CAS  PubMed  Google Scholar 

  33. Mikhailov IV, Zhulina EB, Borisov OV (2020) Brushes and lamellar mesophases of comb-shaped (co)polymers: a self-consistent field theory. Physical Chemistry Chemical Physics 22:23385–23398

    Article  CAS  PubMed  Google Scholar 

  34. Pickett GT (2001) Classical Path Analysis of end-Grafted Dendrimers: Dendrimer Forest. Macromolecules 34:8784–8791

    Article  CAS  Google Scholar 

  35. Zook TC, Pickett GT (2003) Hollow-Core Dendrimers Revised. Physical Review Letters 90(1)

  36. Zhulina EB, Leermakers FAM, Borisov OV (2015) Ideal mixing in multicomponent brushes of branched macromolecules. Macromolecules 48(23):5614–5622

    Google Scholar 

  37. Semenov AN (1985) Contribution to the theory of microphase layering in block-copolymer melts. Sov Phys JETP 61:733–742

    Google Scholar 

  38. Zhulina EB, Sheiko SS, Dobrynin AV, Borisov OV (2020) Microphase segregation in the melts of bottlebrush block copolymers. Macromolecules 53(7):2582–2593

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by Ministry of Research and Education of the Russian Federation within State Contract N 14.W03.31.0022, by the ANR-DFG TOPOL Project ANR-20-CE92-0044, by the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 823883.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg V. Borisov.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Glossary

a :

monomer unit length

D :

thickness of the swollen corona formed by blocks A

F :

Helmholtz free energy

\(M_{A,B}\) :

polymerization degrees of the main chains in A and B blocks

\(n_{A,B}\) :

polymerization degrees of side chains in A and B blocks

\(m_{A,B}\) :

polymerization degrees of spacers in A and B blocks

\(N_{A},N_{B}\) :

total degrees of polymerization of blocks A and B, respectively

p :

aggregation number in a spherical micelle

R :

radius of the condensed core formed by insoluble blocks B

s :

surface area of the micellar core per block copolymer

\(va^3\) :

excluded volume of a monomer unit in block A

\(\gamma k_BT\) :

surface tension coefficient on the core-corona interface

\(\phi _B\) :

volume fraction of monomer units of the B-block in the core

\(\eta _{A,B}\) :

topological ratios in A and B blocks

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedeva, I.O., Zhulina, E.B. & Borisov, O.V. Polymorphism of self-assembled colloidal nanostructures of comblike and bottlebrush block copolymers. Colloid Polym Sci 301, 527–536 (2023). https://doi.org/10.1007/s00396-023-05073-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-023-05073-6

Keywords

Navigation