Skip to main content
Log in

Synthesis and characterization of PPDMB poly (pyrrole-co-3,5-dimethoxybenzaldehyde) and PPMB poly (pyrrole-co-2-methoxybenzaldehyde): a new copolymer for solar cells

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In particular, heterocyclic aromatic polymers are an important class because they possess chemical properties and electrical stability in both oxidized (doped) and neutral (undoped) states. In this paper, we present a detailed study of the synthesis and characterization of new conductive polymers derived from poly (pyrrole-co-3,5-Dimethoxybenzaldehyde], and poly (pyrrole-co-2-Methoxybenzaldehyde), by polycondensation of conjugated amine heterocycles and 3,5-dimethoxybenzaldehyde and 2-methoxybenzaldehyde, in chloroform in the presence of exchanged maghnite as a catalyst. The latter has shown good efficiency in copolymerizing several vinyl and heterocyclic monomers, due to its good thermal and chemical stability. These polymers are soluble in all organic solvents, and they present a good condidates for the development of photovoltaic cells. In order to improve the productivity of the polymerization, we particularly studied the influence of catalyst quantity, time, temperature, solvent and molar ratio on the efficiency. The conjugated copolymers were characterized using RMN, UV–visible, FTIR and cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Chiang CK, Fincher CR, Park YW Jr, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid Alan G (1977) Electrical Conductivity in Doped Polyacetylene. Phys Rev Lett 39:1098–1101

    Article  CAS  Google Scholar 

  2. Belbachir M, Bensaoula A (2006) A Composition and method for catalysis using bentonite. US Patent 7:094,823

  3. Nagarjatti JP, Ashhley KR (1974) Synthesis. 186

  4. Lee CH, Lindsey JS (1994) One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks. Tetrahedron 50:11427–11440

    Article  CAS  Google Scholar 

  5. Belmokhtar A, Sahli N, Yahiaoui A, Belbachir M (2007) Polycondensation of pyrrole and benzaldehyde catalyzed by Maghnite–H+. Express Polym Lett 1(7):443–449

    Article  Google Scholar 

  6. Sugimoto R, Takeda S, Gu HB, Yoshino K (1986) Chem Express 1:635

    CAS  Google Scholar 

  7. Yusuke H, Takaomi K (2012) Effect of Acidic Catalyst on Properties of Novel Conductive Copolymer Films Made of Pyrrole and Formyl Pyrrole. J Eng 4:139–145

    Google Scholar 

  8. Motorhio T, Yusuke H, Nobuhiro O, Masaki T, Takaomi K (2013) Nanostructural analysis of self-standing pyrrole/2-formylpyrrole copolymer films. J Homepage Micron 46:22–26

    Article  Google Scholar 

  9. Sirilak A, Kawee S, Sarintorn L (2014) J Met Mater Miner 24(2):29–34

    Google Scholar 

  10. Kun W, Yang C, Motohiro T, Takaomi K (2014) J Mater Sci 49:5746–5756

    Article  Google Scholar 

  11. Prasit P, Motohiro T, Takaomi K (2015) A novel highly sensitive humidity sensor based on poly (pyrrole-co-formyl pyrrole) copolymer film: AC and DC impedance analysis. Sens Actuators B, J Homepage 209:186–193

    Article  Google Scholar 

  12. Belbachir M, Bensaoula A (2006) A Composition and method for catalysis using bentonite. US PATENT No US 7:094,823

  13. Kim CY, Lee JY, Kim DY (1998) Patent 5:795–953

  14. Kim IW, Lee JY, Lee H (1996) Solution-cast polypyrrole film: the electrical and thermal properties. Synth Met 78:177–180

    Article  CAS  Google Scholar 

  15. Lee GJ, Lee SH et al (2002) Synthesis and characterization of soluble polypyrrole with improved electrical conductivity. J Appl Poly Sci 84:2583–2590

    Article  CAS  Google Scholar 

  16. Oh EJ, Jang KS (2001) Synth Met 119:109

    Article  CAS  Google Scholar 

  17. Qi Z, Pickup PG (1997) Size control of polypyrrole particles. Chem Mater 9:2934–2939

    Article  CAS  Google Scholar 

  18. Laridjani M, Pouget JP, Scherr EM, MacDiarmid AG, Jozefowicz ME, Epstein AJ (1992) Amorphography - the relationship between amorphous and crystalline order. 1. The structural origin of memory effects in polyaniline. Macromolecules 25:4106–4113

    Article  CAS  Google Scholar 

  19. Liu J, Wan MX (2001) Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method. J Mater Chem 11:404–407

    Article  CAS  Google Scholar 

  20. Morgan PW (1995) Condensation Polymers: By Interfacial, and Solution Methods. Wiley, New York

    Google Scholar 

  21. Banels C, Krenz K, Wachtel A (1987) J Membrane Sci 32:291

    Article  Google Scholar 

  22. Chen WC, Jenekhe SA (1995) Small-bandgap conducting polymers based on conjugated poly (heteroarylene methines). 1. Precursor poly (heteroarylene methylenes). Macromolecules 28:454–264

    Article  CAS  Google Scholar 

  23. Chen WC, Jenekhe SA (1995) Small-bandgap conducting polymers based on conjugated poly (heteroarylene methines). 2. Synthesis, structure, and properties. Macromolecules 28:465–480

    Article  CAS  Google Scholar 

  24. Kuramoto N, Tomita A (1997) Chemical oxidative polymerization of dodecylbenzenesulfonic acid aniline salt in chloroform. Synth Met 88:147–151

    Article  CAS  Google Scholar 

  25. Cooper PY, Klavetter FL, Starnes WH (1997) J Polym Prepr (Am Chem Soc, Div Polym Chem) 38:117

  26. Ohshita J, Kanaya D, Ishikawa M, Koike T, Yamanaka T (1991) Macromolecules 24:2106

    Article  CAS  Google Scholar 

  27. Breen C, Zahoor FD, Madejovà J, Komadel P (1997) Characterization and catalytic activity of acid-treated, size-fractionated smectites. J Phys Chem 101:5324–5331

    Article  CAS  Google Scholar 

  28. Breen C, Madéjovà J (1995) Appl Cay Science 10:219

    CAS  Google Scholar 

  29. Laridjani M, Pouget JP, Scherr EM, MacDiarmid AG, Jozefowicz ME, Epstein AJ (1992) Amorphography - the relationship between amorphous and crystalline order. 1. The structural origin of memory effects in polyaniline. Macromolecules, Macromolecules 25:4106–4113

    Article  CAS  Google Scholar 

  30. Belmokhtar A, Yahiaoui A, Hachemaoui A, Benyoucef A, Sahli N, Belbachir M (2012) International Scholarly Research Network. ISRN Physical Chemistry 7:781879

    Google Scholar 

  31. Zhang Z, Wu H, Yi W (2005) Synthesis of poly[(3-octanoylpyrrole-2,5-diyl)-p-nitrobenzylidene] and its third-order nonlinear optical property. Chem Res Chinese U 21(2):220–223

  32. Tiffour I, Dehbi A, Mourad AI et al (2016) Synthesis and characterization of a new organic semiconductor material. Mater Chem Phys 178:49–56

    Article  CAS  Google Scholar 

  33. Tiffour I, Bassaid S, Dehbi A et al (2019) Realization and characterization of a new organic thin film semiconductor. Surf Rev Lett 26(1):1850127(1–6)

  34. Colaneri N, Kobayashi M, Heeger AJ (1986) Electrochemical and opto-electrochemical properties of poly (isothianaphthene). Synth Met 14:45–52

    Article  CAS  Google Scholar 

  35. Dehbi A, Mourad AHI (2016) Durability of mono-layer versus trilayers LDPE films used as greenhouse cover: Comparative study. Arab J Chem 9:S282–S289

    Article  CAS  Google Scholar 

  36. Djakhdane K, Dehbi A, Mourad AHI et al (2016) The effect of sand wind, temperature and exposure time on tri-layer polyethylene film used as greenhouse roof. Macromol Eng 45(8):346–352

    CAS  Google Scholar 

  37. Babaghayou MI, Mourad AHI, Lorenzo V et al (2016) Photodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE films. Mater Des 111:279–290

    Article  CAS  Google Scholar 

  38. Babaghayou MI, Mourad AHI, Lorenzo VL et al (2018) Anisotropy evolution of low density polyethylene greenhouse covering films during their service life. Polym Test 66:146–154

    Article  CAS  Google Scholar 

  39. Silverstain RM, Bassier GC, Morril TC (1991) Spectrometric identification of organic compounds. Chichester: Wiley, pp x þ 419

  40. Gherras H, Hachemaoui A, Yahiaoui A et al (2018) Synthesis and characterization of poly(2,5-diyl pyrrole-2-pyrrolyl methine) semiconductor copolymer. J Semiconduct 39(10):102001(1–7)

  41. Mourad AHI, Akkad RO, Soliman AA et al (2009) Characterization of thermally treated and untreated polyethylene-polypro-pylene blends using DSC, TGA and IR techniques. Plastics. Rubber and Composites Macromol Eng 38:265–278

    Article  CAS  Google Scholar 

  42. Dahoa B, Fontanesi C, Messori M, Dehbi A, Belfedal A (2019) Synthesis and Characterization of Semiconductor Polymer Doped with FeCl3 and I2. Semiconductors 53(12):1656–1664

    Article  Google Scholar 

  43. Rahmani A, Harrane A, Belbachir M (2013) 1H-NMR spectra of conductive, anticorrosive and soluble polyaniline exchanged by an eco-catalyst layered (Maghnite-H+). World J Chem 8:20–26

    Google Scholar 

  44. Gherras H, Yahiaoui A, Hachemaoui A (2019) poly(pyrrole-co-2-nitrocinnamaldehyde) (PPNC), a new copolymer for solar cells applications. Polym Polym Compos 28:1–8

    Google Scholar 

  45. Janaki V, Shanthi K, Kamala-Kannan S (2015) Polypyrrole—a conducting nanopolymer for the treatment of simulated textile effluent. J Environ Biotechnol 1:45–51

    Google Scholar 

  46. Rajeswari V, Janaki V, Shanthi K, Kamala-Kannan S (2016) Adsorption and subsequent detoxification of hexavalent chromium in aqueous solution using polypyrrole-bacterial extracellular polysaccharide nanocomposite. Environ Prog Sustain Energy 35:1293–1297

    Article  CAS  Google Scholar 

  47. Chandrsekhar S, Sadashiva BK, Suresh KA (1977) Liquid crystals of disc-like molecules. Pramana 7:471–480

    Article  Google Scholar 

  48. Janietz S, Bradley DDC, Grell M, Giebeler C, Ibasekaran M, Woo EP (1998) Appl Phys Lett 73(17):2453

    Article  CAS  Google Scholar 

  49. Servini R, Spencer GWC, Holmes AB, Moratti SC, Friend RH (1997) Synth Met 84:359–364

    Article  Google Scholar 

  50. Mukhamed LK, Dmitry VK, Ying YF, Zhi YX, Yan HG, Vitaly SK, Alexei RK (2014) Chinese J Polym Sci 32:844–853

Download references

Funding

This work was financially supported by the Agency Thematic Research Science and Technology (ATRST) and the Directorate General of Scientific Research and Technological Development (La Direction Générale de la Recherche Scientifique et du Développement Technologique (DGRSDT)) of Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Dehbi.

Ethics declarations

Conflict of interest

They have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laoufi, M., Yahiaoui, A., Hachemaoui, A. et al. Synthesis and characterization of PPDMB poly (pyrrole-co-3,5-dimethoxybenzaldehyde) and PPMB poly (pyrrole-co-2-methoxybenzaldehyde): a new copolymer for solar cells. Colloid Polym Sci 300, 1139–1154 (2022). https://doi.org/10.1007/s00396-022-05015-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-05015-8

Keywords

Navigation