Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. https://doi.org/10.1021/bm0703970
Article
CAS
Google Scholar
Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59:449–459. https://doi.org/10.1007/s10086-013-1365-z
Article
CAS
Google Scholar
Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. https://doi.org/10.1021/acs.langmuir.6b03765
Article
PubMed
CAS
Google Scholar
Delepierre G, Vanderfleet OM, Niinivaara E et al (2021) Benchmarking cellulose nanocrystals Part II: New industrially produced materials. Langmuir la-2021–00550w. https://doi.org/10.1021/acs.langmuir.1c00550
Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292:5–31. https://doi.org/10.1007/s00396-013-3112-9
Article
CAS
Google Scholar
Tavakolian M, Jafari SM, van de Ven TGM (2020) A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials. Nano-Micro Lett 12:73. https://doi.org/10.1007/s40820-020-0408-4
Article
CAS
Google Scholar
Tan HF, Ooi BS, Leo CP (2020) Future perspectives of nanocellulose-based membrane for water treatment. J Water Process Eng 37:101502. https://doi.org/10.1016/j.jwpe.2020.101502
Article
Google Scholar
Halim A, Xu Y, Lin K-H et al (2019) Fabrication of cellulose nanofiber-deposited cellulose sponge as an oil-water separation membrane. Sep Purif Technol 224:322–331. https://doi.org/10.1016/j.seppur.2019.05.005
Article
CAS
Google Scholar
Yadav C, Saini A, Zhang W et al (2021) Plant-based nanocellulose: a review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. Int J Biol Macromol 166:1586–1616. https://doi.org/10.1016/j.ijbiomac.2020.11.038
Article
PubMed
CAS
Google Scholar
Kupnik K, Primožič M, Kokol V, Leitgeb M (2020) Nanocellulose in drug delivery and antimicrobially active materials. Polymers (Basel) 12:1–40. https://doi.org/10.3390/polym12122825
Article
CAS
Google Scholar
Vu CM, Nguyen DD, Sinh LH et al (2017) Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: fabrication and mechanical characteristics. Polym Test 61:150–161. https://doi.org/10.1016/j.polymertesting.2017.05.013
Article
CAS
Google Scholar
Liu H, Geng S, Hu P et al (2015) Study of pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber. Colloid Polym Sci 293:963–974. https://doi.org/10.1007/s00396-014-3484-5
Article
CAS
Google Scholar
Zhou H, Xu Z, Zhou G, Xu X (2021) Optical modeling of cellulose nanofibril self-assembled thin film with iridescence. Colloid Polym Sci 299:1139–1145. https://doi.org/10.1007/s00396-021-04834-5
Article
CAS
Google Scholar
Liu S, Low Z, Xie Z, Wang H (2021) TEMPO-oxidized cellulose nanofibers: a renewable nanomaterial for environmental and energy applications. Adv Mater Technol 6:2001180. https://doi.org/10.1002/admt.202001180
Article
CAS
Google Scholar
Kim H, Guccini V, Lu H et al (2019) Lithium ion battery separators based on carboxylated cellulose nanofibers from wood. ACS Appl Energy Mater 2:1241–1250. https://doi.org/10.1021/acsaem.8b01797
Article
CAS
Google Scholar
Qu R, Wang Y, Li D, Wang L (2021) Rheological behavior of nanocellulose gels at various calcium chloride concentrations. Carbohydr Polym 274:118660. https://doi.org/10.1016/j.carbpol.2021.118660
Article
PubMed
CAS
Google Scholar
Alves L, Ferraz E, Lourenço AF et al (2020) Tuning rheology and aggregation behaviour of TEMPO-oxidised cellulose nanofibrils aqueous suspensions by addition of different acids. Carbohydr Polym 237:116109. https://doi.org/10.1016/j.carbpol.2020.116109
Article
PubMed
CAS
Google Scholar
Sato Y, Kusaka Y, Kobayashi M (2017) Charging and aggregation behavior of cellulose nanofibers in aqueous solution. Langmuir 33:12660–12669. https://doi.org/10.1021/acs.langmuir.7b02742
Article
PubMed
CAS
Google Scholar
Lin K-H, Hu D, Sugimoto T et al (2019) An analysis on the electrophoretic mobility of cellulose nanocrystals as thin cylinders: relaxation and end effect. RSC Adv 9:34032–34038. https://doi.org/10.1039/C9RA05156B
Article
PubMed
PubMed Central
CAS
Google Scholar
Mendoza DJ, Hossain L, Browne C et al (2020) Controlling the transparency and rheology of nanocellulose gels with the extent of carboxylation. Carbohydr Polym 245:116566. https://doi.org/10.1016/j.carbpol.2020.116566
Article
PubMed
CAS
Google Scholar
Araki J (2013) Electrostatic or steric? – preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9:4125. https://doi.org/10.1039/c3sm27514k
Article
CAS
Google Scholar
Fukuzumi H, Tanaka R, Saito T, Isogai A (2014) Dispersion stability and aggregation behavior of TEMPO-oxidized cellulose nanofibrils in water as a function of salt addition. Cellulose 21:1553–1559. https://doi.org/10.1007/s10570-014-0180-z
Article
CAS
Google Scholar
Russel WB, Saville DA, Schowalter WR (1992) Colloidal dispersions. Cambridge University Press
Google Scholar
Mewis J, Wagner NJ (2012) Colloidal suspension rheology. Cambridge University Press
Google Scholar
Kawasaki S, Kobayashi M (2018) Affirmation of the effect of pH on shake-gel and shear thickening of a mixed suspension of polyethylene oxide and silica nanoparticles. Colloids Surfaces A Physicochem Eng Asp 537:236–242. https://doi.org/10.1016/j.colsurfa.2017.10.033
Article
CAS
Google Scholar
Kobayashi M, Adachi Y, Ooi S (2000) On the steady shear viscosity of coagulated suspensions. Nihon Reoroji Gakkaishi 28:143–144
Article
CAS
Google Scholar
Tsujimoto Y, Yoshida A, Kobayashi M, Adachi Y (2013) Rheological behavior of dilute imogolite suspensions. Colloids Surfaces A Physicochem Eng Asp 435:109–114. https://doi.org/10.1016/j.colsurfa.2012.12.041
Article
CAS
Google Scholar
Kobayashi M, Skarba M, Galletto P et al (2005) Effects of heat treatment on the aggregation and charging of Stöber-type silica. J Colloid Interface Sci 292:139–147. https://doi.org/10.1016/j.jcis.2005.05.093
Article
PubMed
CAS
Google Scholar
Huang Y, Yamaguchi A, Pham TD, Kobayashi M (2018) Charging and aggregation behavior of silica particles in the presence of lysozymes. Colloid Polym Sci 296:145–155. https://doi.org/10.1007/s00396-017-4226-2
Article
CAS
Google Scholar
Behrens SH, Christl DI, Emmerzael R et al (2000) Charging and aggregation properties of carboxyl latex particles: experiments versus DLVO theory. Langmuir 16:2566–2575. https://doi.org/10.1021/la991154z
Article
CAS
Google Scholar
Kobayashi M, Yuki S, Adachi Y (2016) Effect of anionic surfactants on the stability ratio and electrophoretic mobility of colloidal hematite particles. Colloids Surfaces A Physicochem Eng Asp 510:190–197. https://doi.org/10.1016/j.colsurfa.2016.07.063
Article
CAS
Google Scholar
Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier
Google Scholar
Derjaguin B, Landau L (1941) The theory of stability of highly charged lyophobic sols and coalescence of highly charged particles in electrolyte solutions. Acta Physicochim URSS 14:633–662
Google Scholar
Kobayashi M, Juillerat F, Galletto P et al (2005) Aggregation and charging of colloidal silica particles: effect of particle size. Langmuir 21:5761–5769. https://doi.org/10.1021/la046829z
Article
PubMed
CAS
Google Scholar
Kobayashi M, Nitanai M, Satta N, Adachi Y (2013) Coagulation and charging of latex particles in the presence of imogolite. Colloids Surfaces A Physicochem Eng Asp 435:139–146. https://doi.org/10.1016/j.colsurfa.2012.12.057
Article
CAS
Google Scholar
Klein S, Fisher M, Franks G et al (2001) Effect of the interparticle pair potential on the rheological behavior of zirconia powders: II, The influence of chem-adsorbed silanes. J Am Ceram Soc 84:991–995. https://doi.org/10.1111/j.1151-2916.2001.tb00780.x
Article
CAS
Google Scholar
Johnson SB, Franks G V, Scales PJ et al (2000) Surface chemistry – rheology relationships in concentrated mineral suspensions. 267–304
Yamaguchi A, Kobayashi M, Adachi Y (2019) Yield stress of mixed suspension of silica particles and lysozymes: The effect of zeta potential and adsorbed amount. Colloids Surfaces A Physicochem Eng Asp 578:123575. https://doi.org/10.1016/j.colsurfa.2019.123575
Article
CAS
Google Scholar
Nakamura H, Makino S, Ishii M (2021) Effects of electrostatic interaction on rheological behavior and microstructure of concentrated colloidal suspensions. Colloids Surfaces A Physicochem Eng Asp 623:126576. https://doi.org/10.1016/j.colsurfa.2021.126576
Article
CAS
Google Scholar
Tsujimoto Y, Kobayashi M, Adachi Y (2014) Viscosity of dilute Na-montmorillonite suspensions in electrostatically stable condition under low shear stress. Colloids Surfaces A Physicochem Eng Asp 440:20–26. https://doi.org/10.1016/j.colsurfa.2012.11.005
Article
CAS
Google Scholar
Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56. https://doi.org/10.1016/j.cocis.2017.02.002
Article
CAS
Google Scholar
Boger DV, Wierenga AM, Philipse AP, Lekkerkerker HNW (1998) Aqueous dispersions of colloidal boehmite: structure, dynamics, and yield stress of rod gels. Langmuir 7463:55–65
Google Scholar
Sipos P, May PM, Hefter GT (2000) Carbonate removal from concentrated hydroxide solutions. Analyst 125:955–958. https://doi.org/10.1039/a910335j
Article
CAS
Google Scholar
Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier
Google Scholar
Ohshima H (1998) Surface charge density/surface potential relationship for a cylindrical particle in an electrolyte solution. J Colloid Interface Sci 200:291–297. https://doi.org/10.1006/jcis.1998.5433
Article
CAS
Google Scholar