Skip to main content

Effect of surfactant concentration and monomer polarity on particle nucleation in emulsion step polymerization of dithiol with diene

Abstract

The dependence of the number of particles Np as a function of the surfactant concentration [S] is investigated for the step polymerization of dithiol-diene emulsions. A sigmoidal curve for log Np vs log [S] is found for a range of monomers regardless of their polarity. Above the critical micellar concentration (6–20 mM), a Np ∝ [S]x relationship is established with an exponent x dependent on the polarity of the two co-monomers. When the two co-monomers are highly water insoluble, x varies typically between 0.6 and 1. With two relatively water soluble co-monomers, x is close to 0. When two co-monomers with contrasting water solubility are involved, the power dependence is more difficult to predict and ranges from 0 to 1, but high x value are generally found when one of the two monomers is highly hydrophobic. This overall trend can be reconciled with the behavior of a conventional emulsion radical chain polymerization.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Abbreviations

N p :

Number of particle per unit volume (L−1)

[S]:

Surfactant concentration (mol L−1)

[I]:

Initiator concentration (mol L−1)

CMC:

Critical micelle concentration

SEC:

Size exclusion chromatography

D z :

z-Average particle diameter Particle

D w :

Weight-average particle diameter

D v :

Volume-average particle diameter

D n :

Number-average particle diameter

DLS:

Dynamic light scattering

cryo-TEM:

Cryogenic transmission electron microscopy

\({s}_{\mathrm{diene}}\) :

Water-solubility of diene

\({s}_{\mathrm{dithiol}}\) :

Water-solubility of dithiol

DAP:

Diallyl phthalate Diene

DATP:

Diallyl terephthalate

DAIP:

Diallyl isophthalate

DAA:

Diallyl adipate

DVE:

Di(ethylene glycol) divinyl ether

CHDM:

1,4-Bis[(vinyloxy)methyl]cyclohexane

EDDT:

2,2-(Ethylenedioxy)diethanedithiol Dithiol

DTT:

DL-dithiothreitol

GDMA:

Ethylene glycol bismercaptoacetate

GDMP:

Ethylene glycol bis(3-mercaptopropionate)

DMDS:

2,2′-Thioldiethanethiol

HMDT:

1,6-Hexanedithiol

DBHQ:

2,5-Di-tert-butylhydroquinone Radical inhibitor

SDS:

Sodium dodecyl sulfate Surfactant

TPO-Li:

Lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate Water-soluble photoinitator

References

  1. Tauer K, Kühn I (1997) in Asua JM (ed) Polymeric dispersions: principles and applications Springer Netherlands, Dordrecht, pp 49–65

  2. Fitch RM (1980) Polymer colloids II. Springer Science & Business Media, New York

    Book  Google Scholar 

  3. Sood A (2008) Modeling of the particle size distribution in emulsion polymerization. J Appl Polym Sci 109:1403–1419. https://doi.org/10.1002/app.28083

    Article  CAS  Google Scholar 

  4. Lovell PA, Schork FJ (2020) Fundamentals of emulsion polymerization. Biomacromol 21:4396–4441. https://doi.org/10.1021/acs.biomac.0c00769

    Article  CAS  Google Scholar 

  5. Fitch RM, Tsai CH (1971) in Fitch RM (ed)Polymer colloids Springer US, Chicago, Illinois

  6. Hansen FK, Ugelstad J (1978) Particle nucleation in emulsion polymerization. I. A theory for homogeneous nucleation. J Polym Sci, Polym Chem Ed 16:1953–1979. https://doi.org/10.1002/pol.1978.170160814

    Article  CAS  Google Scholar 

  7. Dunn AS (1989) Latex particle nucleation in emulsion polymerization. Eur Polym J 25:691–694. https://doi.org/10.1016/0014-3057(89)90030-x

    Article  CAS  Google Scholar 

  8. Morrison BR, Maxwell IA, Gilbert RG, Napper DH (1992) Polymer latexes, pp 28–44

  9. Chern CS, Liou YC, Chen TJ (1998) Particle nucleation loci in styrene miniemulsion polymerization using alkyl methacrylates as the reactive cosurfactant. Macromol Chem Phys 199:1315–1322. https://doi.org/10.1002/(sici)1521-3935(19980701)199:7%3c1315::aid-macp1315%3e3.0.co;2-9

    Article  CAS  Google Scholar 

  10. Nazaran P, Tauer K (2007) Nucleation in emulsion polymerization: another step towards non-micellar nucleation theory. Macromol Symp 259:264–273. https://doi.org/10.1002/masy.200751331

    Article  CAS  Google Scholar 

  11. Tauer K, Hernández HF, Kozempel S, Lazareva O, Nazaran P (2007) Adaption of the mechanism of emulsion polymerization to new experimental results. Macromol Symp 259:253–263. https://doi.org/10.1002/masy.200751330

    Article  CAS  Google Scholar 

  12. Tauer K, Hernandez H, Kozempel S, Lazareva O, Nazaran P (2008) Towards a consistent mechanism of emulsion polymerization-new experimental details. Colloid Poly Sci 286:499–515. https://doi.org/10.1007/s00396-007-1797-3

    Article  CAS  Google Scholar 

  13. Tauer K, Nazaran P (2010) Mechanism and modeling of emulsion polymerization: new ideas and concepts - 1. Particle nucleation Macromol Symp 288:1–8. https://doi.org/10.1002/masy.201050201

    Article  CAS  Google Scholar 

  14. Dobrowolska ME, van Esch JH, Koper GJ (2013) Direct visualization of “coagulative nucleation” in surfactant-free emulsion polymerization. Langmuir 29:11724–11729. https://doi.org/10.1021/la4027927

    Article  PubMed  CAS  Google Scholar 

  15. Smith WV, Ewart RH (1948) Kinetics of emulsion polymerization. J Chem Phys 16:592–599. https://doi.org/10.1063/1.1746951

    Article  CAS  Google Scholar 

  16. Fitch RM (1973) The homogeneous nucleation of polymer colloids. Br Polym J 5:467–483. https://doi.org/10.1002/pi.4980050606

    Article  CAS  Google Scholar 

  17. Gardon JL (1968) Emulsion polymerization. II. Review of experimental data in the context of the revised Smith-Ewart theory. J Polym Sci, Part A-1: Polym Chem. 6:643–664. https://doi.org/10.1002/pol.1968.150060319

  18. Sütterlin N (1980) Polymer colloids II Springer, New York, pp 583–597

  19. Daniels ES, Sudol ED, El-Aasser MS (1992) in Comstock MJ (ed) ACS SymposiumWashington, DC (United States); Am Chem Soc, Washington, DC

  20. Krishnan S, Klein A, El-Aasser MS, Sudol ED (2003) Effect of surfactant concentration on particle nucleation in emulsion polymerization of n-butyl methacrylate. Macromolecules 36:3152–3159. https://doi.org/10.1021/ma021120p

    Article  CAS  Google Scholar 

  21. Czajka A, Armes SP (2021) Time-resolved small-angle X-ray scattering studies during aqueous emulsion polymerization. J Am Chem Soc 143:1474–1484. https://doi.org/10.1021/jacs.0c11183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Subervie D, Le Quéméner F, Canterel R et al (2021) Visible-light emulsion photopolymerization of acrylates and methacrylates: mechanistic insights and introduction of a simplified sulfur-based photoinitiating system. Macromolecules. https://doi.org/10.1021/acs.macromol.0c01692

    Article  Google Scholar 

  23. Galanopoulo P, Gil N, Gigmes D et al (2022) One-step synthesis of degradable vinylic polymer-based latexes via aqueous radical emulsion polymerization. Angew Chem Int Ed Engl. https://doi.org/10.1002/anie.202117498

    Article  PubMed  Google Scholar 

  24. Jönsson JB, Müllner M, Piculell L, Karlsson OJ (2013) Emulsion condensation polymerization in dispersed aqueous media. Interfacial reactions and nanoparticle formation Macromolecules 46:9104–9113. https://doi.org/10.1021/ma401799g

    Article  CAS  Google Scholar 

  25. Durham OZ, Chapman DV, Krishnan S, Shipp DA (2017) Radical mediated thiol-ene emulsion polymerizations. Macromolecules 50:775–783. https://doi.org/10.1021/acs.macromol.6b02228

    Article  CAS  Google Scholar 

  26. Le CMQ, Schmutz M, Chemtob A (2020) Ab initio batch emulsion thiol–ene photopolymerization. Macromolecules 53:2369–2379. https://doi.org/10.1021/acs.macromol.0c00265

    Article  CAS  Google Scholar 

  27. Durham OZ, Shipp DA (2020) Polymer colloids from step-growth thiol-X polymerizations. Polym Rev 61:54–79. https://doi.org/10.1080/15583724.2020.1743307

    Article  CAS  Google Scholar 

  28. Rocha-Botello G, Olvera-Guillen R, Herrera-Ordonez J, Cruz-Soto M, Victoria-Valenzuela D (2019) Unexpected secondary nucleation in poly(vinyl acetate) nanoparticle synthesis by ab initio batch emulsion polymerization using poly(vinyl alcohol) as surfactant Macromol React Eng 13. https://doi.org/10.1002/mren.201900024

  29. Jansen TGT, Meuldijk J, Lovell PA, van Herk AM (2015) On the reaction characteristics of miniemulsion polymerization with aqueous phase initiation - experiments and modeling. Macromol React Eng 9:19–31. https://doi.org/10.1002/mren.201400025

    Article  CAS  Google Scholar 

  30. Durrieu V, Putaux J-L, Passas R, Gandini A (2004) Cryo-TEM and image analysis of polymer nanoparticle dispersions. Cryoelectron Microscopy. 18:19–21. https://hal.archives-ouvertes.fr/hal-02109636

  31. Sütterlin N, Kurth H-J, Markert G (1976) Ein Beitrag zur Teilchenbildung bei der Emulsionspolymerisation von Acrylsäure- und Methacrylsäureestern. Makromol Chem 177:1549–1565. https://doi.org/10.1002/macp.1976.021770523

    Article  Google Scholar 

  32. Van Der Hoff BME (1962) In: Platzer NAJ (ed) Polymerization and polycondensation processes, 34th edn. American Chemical Society, Washington, D.C., pp 6–31

    Chapter  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement n° 765341 (project photo-emulsion, MSCA-ITN-2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham Chemtob.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 484 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le, C.M.Q., Schmutz, M. & Chemtob, A. Effect of surfactant concentration and monomer polarity on particle nucleation in emulsion step polymerization of dithiol with diene. Colloid Polym Sci 300, 917–925 (2022). https://doi.org/10.1007/s00396-022-04993-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04993-z

Keywords

  • Emulsion polymerization
  • Number of particles
  • Particle size
  • Thiol-ene