Skip to main content

Preparation of hypercrosslinked polymer with benzotriazole and its derivatives as monomers and high-efficiency adsorption of tetracycline

Abstract

Four hypercrosslinked polymer materials (HBT-X, X = H, OH, 2OH and CO) were prepared by cross-linking method with benzotriazole (HBT) and its derivatives modified with oxygen-containing functional groups as monomers, and characterized by BET, TGA, and FT-IR. The adsorption behavior of HBT-X for tetracycline (TC) conformed to the pseudo-second-order equation. And Langmuir isotherm model presented the best description at 25 °C, and the highest theoretical adsorption capacities for TC on HBT-OH was 229.9 mg/g. Freundlich isotherm model became the most suitable model at 45 °C due to the change of main interaction forces between HBT-X and TC. Thermodynamic studies revealed that the TC adsorption on HBT-X was spontaneous and endothermic in nature. After reused for 7 times, the adsorption capacity of HBT-OH for TC was only reduced by about 3.2%. The results of this study indicate that HBT-X show great potential in the removal of TC from wastewater.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Sarmah AK, Meyer MT, Boxall ABA (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759. https://doi.org/10.1016/j.chemosphere.2006.03.026

    Article  PubMed  CAS  Google Scholar 

  2. Zhu J, Snow DD, Cassada DA et al (2001) Analysis of oxytetracycline, tetracycline, and chlortetracycline in water using solid-phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 928:177–186. https://doi.org/10.1016/S0021-9673(01)01139-6

    Article  PubMed  CAS  Google Scholar 

  3. Liu X, Xu Q, Yu S et al (2020) Bio-removal of tetracycline antibiotics under the consortium with probiotics Bacillus clausii T and Bacillus amyloliquefaciens producing biosurfactants. Sci Total Environ 710:136329–136376. https://doi.org/10.1016/j.scitotenv.2019.136329

    Article  PubMed  CAS  Google Scholar 

  4. Fagan R, McCormack DE, Dionysiou DD et al (2016) A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater Sci Semicond Process 42:2–14. https://doi.org/10.1016/j.mssp.2015.07.052

    Article  CAS  Google Scholar 

  5. Guo F, Huang X, Chen Z et al (2020) MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight. J Hazard Mater 390:122158–122186. https://doi.org/10.1016/j.jhazmat.2020.122158

    Article  PubMed  CAS  Google Scholar 

  6. Zhuang Y, Liu Q, Kong Y et al (2019) Enhanced antibiotic removal through a dual-reaction-center fenton-like process in 3D graphene based hydrogels. Environ Sci Nano 6:388–398. https://doi.org/10.1039/C8EN01339J

    Article  CAS  Google Scholar 

  7. Zhuang Y, Kong Y, Wang X et al (2019) Novel one step preparation of a 3D alginate based MOF hydrogel for water treatment. New J Chem 43:7202–7208. https://doi.org/10.1039/C8NJ06031B

    Article  CAS  Google Scholar 

  8. Wu M, Zhao S, Tang M et al (2019) Adsorption of sulfamethoxazole and tetracycline on montmorillonite in single and binary systems. Colloids Surf A 575:264–270. https://doi.org/10.1016/j.colsurfa.2019.05.025

    Article  CAS  Google Scholar 

  9. Shen Q, Wang Z, Yu Q et al (2020) Removal of tetracycline from an aqueous solution using manganese dioxide modified biochar derived from Chinese herbal medicine residues. Environ Res 183:109195–109246. https://doi.org/10.1016/j.envres.2020.109195

    Article  PubMed  CAS  Google Scholar 

  10. Ahmed M, Zhou J, Ngo H et al (2015) Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci Total Environ 532:112–126. https://doi.org/10.1016/j.scitotenv.2015.05.130

    Article  PubMed  CAS  Google Scholar 

  11. Liang C, Tang Y, Zhang X et al (2020) ZIF-mediated N-doped hollow porous carbon as a high performance adsorbent for tetracycline removal from water with wide pH range. Environ Res 182:109059–109070. https://doi.org/10.1016/j.envres.2019.109059

    Article  PubMed  CAS  Google Scholar 

  12. Huang H, Niu Z, Shi R et al (2020) Thermal oxidation activation of hydrochar for tetracycline adsorption: the role of oxygen concentration and temperature. Bioresour Technol 306:123096–123135. https://doi.org/10.1016/j.biortech.2020.123096

    Article  PubMed  CAS  Google Scholar 

  13. Zhang M, Li A, Zhou Q et al (2014) Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins. Microporous Mesoporous Mater 184:105–111. https://doi.org/10.1016/j.micromeso.2013.10.010

    Article  CAS  Google Scholar 

  14. Tan L, Tan B (2017) Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46:3322–3356. https://doi.org/10.1039/c6cs00851h

    Article  PubMed  CAS  Google Scholar 

  15. Chen D, Gu S, Fu Y et al (2016) Tunable porosity of nanoporous organic polymers with hierarchical pores for enhanced CO2 capture. Polym Chem 7:3416–3422. https://doi.org/10.1039/C6PY00278A

    Article  CAS  Google Scholar 

  16. Zhu Y, Wan S, Jin Y et al (2015) Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J Am Chem Soc 137:13772–13775. https://doi.org/10.1021/jacs.5b09487

    Article  PubMed  CAS  Google Scholar 

  17. Liu Y, Fan X, Jia X et al (2018) Preparation of magnetic hyper-cross-linked polymers for the efficient removal of antibiotics from water. ACS Sustainable Chem Eng 6:210–222. https://doi.org/10.1021/acssuschemeng.7b02252

    Article  CAS  Google Scholar 

  18. Hu A, Zhang W, Liu Y et al (2021) Synthesis of highly water-dispersible adsorbent derived from alkali-modified hyper-cross-linked polymer for efficient removal of various organic contaminants and ammonia. J Water Process Eng 40:101902. https://doi.org/10.1016/j.jwpe.2020.101902

  19. Gao H, Ding L, Bai H et al (2016) Pitch-based hyper-cross-linked polymers with high performance for gas adsorption. J Mater Chem A 4:16490–16498. https://doi.org/10.1039/C6TA07033G

    Article  CAS  Google Scholar 

  20. Liu Y, Fan X, Jia X et al (2016) Hypercrosslinked polymers: controlled preparation and effective adsorption of aniline. J Mater Sci 51:8579–8592. https://doi.org/10.1007/s10853-016-0118-y

    Article  CAS  Google Scholar 

  21. Bratkowska D, Marcé RM, Cormack PA et al (2010) Synthesis and application of hypercrosslinked polymers with weak cation-exchange character for the selective extraction of basic pharmaceuticals from complex environmental water samples. J Chromatogr A 1217:1575–1582. https://doi.org/10.1016/j.chroma.2010.01.037

    Article  PubMed  CAS  Google Scholar 

  22. Lebouvier N, Pagniez F, Na YM et al (2020) Synthesis, optimization, antifungal activity, selectivity, and CYP51 Binding of New 2-Aryl-3-azolyl-1-indolyl-propan-2-ols. Pharmaceuticals 13:186. https://doi.org/10.3390/ph13080186

    Article  PubMed Central  CAS  Google Scholar 

  23. Katritzky AR, Rachwal S, Rachwal B (1987) The chemistry of N-substituted benzotriazoles. Part 2. Reactions of benzotriazole with aldehydes and aldehyde derivatives. 1-(α-Hydroxyalkyl)-, 1-(α-alkoxyalkyl)-, and 1-(α-acyloxyalkyl)benzotriazoles. ChemInform 18:791–797. https://doi.org/10.1002/chin.198732196

    Article  Google Scholar 

  24. Zhang W, Wang Y, Jia X et al (2019) Cu-catalyzed arylation of 1-acyl-1H-1,2,3-Benzotriazoles via C-N activation. J Organomet Chem 895:64–67. https://doi.org/10.1016/j.jorganchem.2019.05.013

    Article  CAS  Google Scholar 

  25. Muthu R, Kannan S (2016) Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Renew Energy 85:387–394. https://doi.org/10.1016/j.renene.2015.06.056

    Article  CAS  Google Scholar 

  26. Tang L, Zhang S, Zeng GM et al (2015) Rapid adsorption of 2,4-dichlorophenoxyacetic acid by iron oxide nanoparticles-doped carboxylic ordered mesoporous carbon. J Colloid Interface Sci 445:1–8. https://doi.org/10.1016/j.jcis.2014.12.074

    Article  PubMed  CAS  Google Scholar 

  27. Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  28. Jang HM, Yoo S, Choi YK et al (2018) Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar. Bioresour Technol 259:24–31. https://doi.org/10.1016/j.biortech.2018.03.013

    Article  PubMed  CAS  Google Scholar 

  29. Zhou Y, Liu X, Xiang Y et al (2017) Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: adsorption mechanism and modelling. Bioresour Technol 245:266–273. https://doi.org/10.1016/j.biortech.2017.08.178

    Article  PubMed  CAS  Google Scholar 

  30. Idris SA, Alotaibi KM, Peshkur TA et al (2013) Adsorption kinetic study: Effect of adsorbent pore size distribution on the rate of Cr (VI) uptake. Microporous Mesoporous Mater 165:99–105. https://doi.org/10.1016/j.micromeso.2012.08.001

    Article  CAS  Google Scholar 

  31. Nagar R, Sarkar D, Makris KC et al (2010) Effect of solution chemistry on arsenic sorption by Fe- and Al-based drinking-water treatment residuals. Chemosphere 78:1028–1035. https://doi.org/10.1016/j.chemosphere.2009.11.034

    Article  PubMed  CAS  Google Scholar 

  32. Iftikhar AR, Bhatti HN, Hanifa MA et al (2009) Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass. J Hazard Mater 161:941–947. https://doi.org/10.1016/j.jhazmat.2008.04.040

    Article  PubMed  CAS  Google Scholar 

  33. Zhang F, Ma B, Jiang X et al (2016) Dual function magnetic hydroxyapatite nanopowder for removal of malachite green and Congo red from aqueous solution. Powder Technol 302:207–214. https://doi.org/10.1016/j.powtec.2016.08.044

    Article  CAS  Google Scholar 

  34. Jiang L, Liu L, Xiao S et al (2016) Preparation of a novel manganese oxide-modified diatomite and its aniline removal mechanism from solution. Chem Eng J 284:609–619. https://doi.org/10.1016/j.cej.2015.08.140

    Article  CAS  Google Scholar 

  35. Li T, Liu Y, Peng Q et al (2013) Removal of lead(II) from aqueous solution with ethylenediamine-modifified yeast biomass coated with magnetic chitosan microparticles: Kinetic and equilibrium modeling. Chem Eng J 214:189–197. https://doi.org/10.1016/j.cej.2012.10.055

    Article  CAS  Google Scholar 

  36. Sun H, Xin S, Mao J et al (2010) Tetracycline sorption to coal and soil humic acids: An examination of humic structural heterogeneity. Environ Toxicol Chem 29:1934–1942. https://doi.org/10.1002/etc.248

    Article  PubMed  CAS  Google Scholar 

  37. Ecl A, Hbb C, Mp D et al (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  38. Islam M, Ahmed MJ, Khanday W et al (2017) Mesoporous activated carbon prepared from NaOH activation of rattan (Lacosperma secundiflorum) hydrochar for methylene blue removal. Ecotoxicol Environ Saf 138:279–285. https://doi.org/10.1016/j.ecoenv.2017.01.010

    Article  PubMed  CAS  Google Scholar 

  39. Fu Q, Deng Y, Li H et al (2009) Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals. Appl Surf Sci 255:4551–4557. https://doi.org/10.1016/j.apsusc.2008.11.075

    Article  CAS  Google Scholar 

  40. Ma Y, Zhou Q, Zhou S et al (2014) A bifunctional adsorbent with high surface area and cation exchange property for synergistic removal of tetracycline and Cu2+. Chem Eng J 258:26–33. https://doi.org/10.1016/j.cej.2014.07.096

    Article  CAS  Google Scholar 

Download references

Funding

The author(s) disclosed receipt of the following financial support for the research: This work was supported by the Key Laboratory of Green Chemical Engineering Process of Ministry of Education Research for the Open Fund [GCP20190208]; National Natural Science Foundation of China [21276201]; the Graduate Education Innovation Fund of Wuhan Institute of Technology [CX202030].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhua Xiao or Zhiping Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 968 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Yao, Y., Zhu, X. et al. Preparation of hypercrosslinked polymer with benzotriazole and its derivatives as monomers and high-efficiency adsorption of tetracycline. Colloid Polym Sci 300, 939–952 (2022). https://doi.org/10.1007/s00396-022-04981-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04981-3

Keywords

  • Hypercrosslinked polymer
  • Benzotriazole
  • High-efficiency adsorption
  • Tetracycline