Skip to main content
Log in

Polymer particle growth and morphology evolution during dispersion polymerization through optical microscopy

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The paper is focused on the growth of polystyrene particles followed by optical microscopy during dispersion polymerization (DP) in the absence of crosslinking agents. In particular, we compared the growth kinetics of the particles and their tendency to coagulation in alcoholic media in the presence of a steric stabilizer, chosen from one of the following: polyvinylpyrrolidone (PVP-40, PVP-10, PVP-360), hydroxypropyl cellulose (HPC), poly(acrylic acid) (PAA), and polyvinyl alcohol (PVA). The particle size distributions from the optical microscopy images were obtained using trained neural network. To predict the particles’ growth at the first few hours after microphase separation, we suggest to adopt a simple model describing the coalescence of liquid drops in immiscible fluids. Based on this model, we discuss the possible approaches for the preparation routes of the particles with non-spherical morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barrett KEJ (1973) Dispersion polymerisation in organic media. Br Polym J 5:259–271. https://doi.org/10.1002/pi.4980050403

    Article  CAS  Google Scholar 

  2. Paine AJ (1990) Dispersion polymerization of styrene in polar solvents. 7. A simple mechanistic model to predict particle size. Macromolecules 23:3109–3117. https://doi.org/10.1021/ma00214a013

    Article  CAS  Google Scholar 

  3. Paine AJ, Luymes W, McNulty J (1990) Dispersion polymerization of styrene in polar solvents. 6. Influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules 23:3104–3109. https://doi.org/10.1021/ma00214a012

    Article  CAS  Google Scholar 

  4. Lok KP, Ober CK (1985) Particle size control in dispersion polymerization of polystyrene. Can J Chem 63:209–216. https://doi.org/10.1139/v85-033

    Article  CAS  Google Scholar 

  5. Almog Y, Reich S, Levy M (1982) Monodisperse polymeric spheres in the micron size range by a single step process. Br Polym J 14:131–136. https://doi.org/10.1002/pi.4980140402

    Article  CAS  Google Scholar 

  6. Ober CK, Hair ML (1987) The effect of temperature and initiator levels on the dispersion polymerization of polystyrene. J Polym Sci Part A Polym Chem 25:1395–1407. https://doi.org/10.1002/pola.1987.080250516

    Article  CAS  Google Scholar 

  7. Tseng CM, Lu YY, El-Aasser MS, Vanderhoff JW (1986) Uniform polymer particles by dispersion polymerization in alcohol. J Polym Sci Part A Polym Chem 24:2995–3007. https://doi.org/10.1002/pola.1986.080241126

    Article  CAS  Google Scholar 

  8. Yasuda M, Seki H, Yokoyama H, Ogino H, Ishimi K, Ishikawa H (2001) Simulation of a particle formation stage in the dispersion polymerization of styrene. Macromolecules 34:3261–3270. https://doi.org/10.1021/ma001690u

    Article  CAS  Google Scholar 

  9. Mahjub A (2016) Monte Carlo simulation of the dispersion polymerization of styrene. RSC Adv 6:48973–48984. https://doi.org/10.1039/c6ra08662d

    Article  CAS  Google Scholar 

  10. Chernyshev AV, Soini AE, Surovtsev IV, Maltsev VP, Soini E (1997) A mathematical model of dispersion radical polymerization kinetics. J Polym Sci Part A Polym Chem 35:1799–1807. https://doi.org/10.1002/(sici)1099-0518(19970715)35:9%3c1799::aid-pola20%3e3.0.co;2-%23

    Article  CAS  Google Scholar 

  11. Sáenz JM, Asua JM (1999) Mathematical modeling of dispersion copolymerization. Colloids Surfaces A Physicochem Eng Asp 153:61–74. https://doi.org/10.1016/S0927-7757(98)00426-9

    Article  Google Scholar 

  12. Costa LI, Storti G (2017) Kinetic modeling of precipitation and dispersion polymerizations. In: Advances in Polymer Science. pp 45–77

  13. Zhulina EB, Borisov OV, Priamitsyn VA (1990) Theory of steric stabilization of colloid dispersions by grafted polymers. J Colloid Interface Sci 137:495–511. https://doi.org/10.1016/0021-9797(90)90423-L

    Article  CAS  Google Scholar 

  14. Semenov AN, Shvets AA (2015) Theory of colloid depletion stabilization by unattached and adsorbed polymers. Soft Matter. https://doi.org/10.1039/c5sm01365h

    Article  PubMed  Google Scholar 

  15. Murshid N, Kitaev V (2014) Role of poly(vinylpyrrolidone) (PVP) and other sterically protecting polymers in selective stabilization of 111 and 100 facets in pentagonally twinned silver nanoparticles. Chem Commun. https://doi.org/10.1039/c3cc48003h

    Article  Google Scholar 

  16. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalt Trans. https://doi.org/10.1039/c5dt02964c

    Article  Google Scholar 

  17. Jain N, Wang Y, Jones SK, Hawkett BS, Warr GG (2010) Optimized steric stabilization of aqueous ferrofluids and magnetic nanoparticles. Langmuir. https://doi.org/10.1021/la903513v

    Article  PubMed  Google Scholar 

  18. Napper DH (1977) Steric stabilization. J Colloid Interface Sci 58:390–407. https://doi.org/10.1016/0021-9797(77)90150-3

    Article  CAS  Google Scholar 

  19. Klein SM, Manoharan VN, Pine DJ, Lange FF (2003) Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer. Colloid Polym Sci 282:7–13. https://doi.org/10.1007/s00396-003-0915-0

    Article  CAS  Google Scholar 

  20. Shen S, Sudol ED, El-Aasser MS (1993) Control of particle size in dispersion polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 31:1393–1402. https://doi.org/10.1002/pola.1993.080310606

    Article  CAS  Google Scholar 

  21. Fandrich P, Wiehemeier L, Dirksen M, Wrede O, Kottke T, Hellweg T (2021) Acrylamide precipitation polymerization in a continuous flow reactor: an in situ FTIR study reveals kinetics. Colloid Polym Sci 299:221–232. https://doi.org/10.1007/s00396-020-04762-w

    Article  CAS  Google Scholar 

  22. Cho YS, Shin CH, Han S (2016) Dispersion polymerization of polystyrene particles using alcohol as reaction medium. Nanoscale Res Lett 11:1–9. https://doi.org/10.1186/s11671-016-1261-8

    Article  CAS  Google Scholar 

  23. Tan H, Wooh S, Butt HJ, Zhang X, Lohse D (2019) Porous supraparticle assembly through self-lubricating evaporating colloidal ouzo drops. Nat Commun. https://doi.org/10.1038/s41467-019-08385-w

    Article  PubMed  PubMed Central  Google Scholar 

  24. Piccinini E, Pallarola D, Battaglini F, Azzaroni O (2016) Self-limited self-assembly of nanoparticles into supraparticles: towards supramolecular colloidal materials by design. Mol Syst Des Eng 1:155–162

    Article  CAS  Google Scholar 

  25. Park JI, Nguyen TD, De Queirós SG, Bahng JH, Srivastava S, Zhao G, Sun K, Zhang P, Glotzer SC, Kotov NA (2014) Terminal supraparticle assemblies from similarly charged protein molecules and nanoparticles. Nat Commun. https://doi.org/10.1038/ncomms4593

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhai S, Sun H, Qiu B, Zou H (2020) Deformation of raspberry-like polymer composite particles by colloidal fusion. Mater Adv 1:197–205. https://doi.org/10.1039/d0ma00090f

    Article  CAS  Google Scholar 

  27. Shen H, Du X, Ren X, Xie Y, Sheng X, Zhang X (2017) Morphology control of anisotropic nonspherical functional polymeric particles by one-pot dispersion polymerization. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2017.01.006

    Article  Google Scholar 

  28. Sankova N, Semeykina V, Parkhomchuk E (2019) Anomalous morphology as one of the stages in the formation of polystyrene particles during dispersion polymerization. Colloids Surfaces A Physicochem Eng Asp 581:123745. https://doi.org/10.1016/j.colsurfa.2019.123745

    Article  CAS  Google Scholar 

  29. Chen CW, Chen CY (2009) Preparation of monodisperse polystyrene microspheres: effect of reaction parameters on particle formation, and optical performances of its diffusive agent application. Colloid Polym Sci 287:1377–1389. https://doi.org/10.1007/s00396-009-2098-9

    Article  CAS  Google Scholar 

  30. Park M, Kim Y (2014) Preparation of Monodisperse poly(acrylic acid) with a water-soluble initiator by solution polymerization in aqueous phase. Elastomers Compos 49:232–238. https://doi.org/10.7473/ec.2014.49.3.232

    Article  CAS  Google Scholar 

  31. Brandrup J, Immergut E, Grulke E (1999) Polymer Handbook. Fourth Edition. A Wiley-Interscience Publication

  32. Okunev AG, Mashukov MY, Nartova AV, Matveev AV (2020) Nanoparticle recognition on scanning probe microscopy images using computer vision and deep learning. Nanomaterials 10:1–16. https://doi.org/10.3390/nano10071285

    Article  CAS  Google Scholar 

  33. Okunev AG, Yu Mashukov M, Sankova NN, Nartova AV, Matveev AV (2021) Artificial intelligence for imaging data analysis in materials science: microscopy and behind. IOP Conf Ser Mater Sci Eng 1155:012015. https://doi.org/10.1088/1757-899x/1155/1/012015

    Article  Google Scholar 

  34. Matveev AV, Mashukov MY, Nartova AV, Sankova NN, Okunev AG (2021) Automatic analysis of microscopy images using the DLgram01 cloud service. Phys Chem Asp study Clust nanostructures Nanomater 13:300–311. https://doi.org/10.26456/pcascnn/2021.13.300

  35. Russell BC, Torralba A, Murphy KP, Freeman WT (2008) LabelMe: A database and web-based tool for image annotation. Int J Comput Vis 77:157–173. https://doi.org/10.1007/s11263-007-0090-8

    Article  Google Scholar 

  36. Wessa P (2020) Histogram (v1.0.21) in Free Statistics Software (v1.2.1), Office for Research Development and Education, URL http://www.wessa.net/rwasp_histogram.wasp/

  37. Zhang F, Cao L, Yang W (2010) Preparation of monodisperse and anion-charged polystyrene microspheres stabilized with polymerizable sodium styrene sulfonate by dispersion polymerization. Macromol Chem Phys 211:744–751. https://doi.org/10.1002/macp.200900573

    Article  CAS  Google Scholar 

  38. Tuncel A, Kahraman R, Pişkin E (1993) Monosize polystyrene microbeads by dispersion polymerization. J Appl Polym Sci 50:303–319. https://doi.org/10.1002/app.1993.070500212

    Article  CAS  Google Scholar 

  39. Bühler V (2005) Polyvinylpyrrolidone excipients for pharmaceuticals. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  40. Taghizadeh M, Amiri SS (2017) Experimental measurements and modelling of the solvent activity and surface tension of binary mixtures of polyvinyl pyrrolidone) in water and ethanol. J Serbian Chem Soc. https://doi.org/10.2298/JSC160505028T

    Article  Google Scholar 

  41. Thomas DN, Judd SJ, Fawcett N (1999) Flocculation modelling: a review. Water Res 33:1579–1592. https://doi.org/10.1016/S0043-1354(98)00392-3

    Article  CAS  Google Scholar 

  42. Kreer M, Penrose O (1994) Proof of dynamical scaling in Smoluchowski’s coagulation equation with constant kernel. J Stat Phys 75:389–407. https://doi.org/10.1007/BF02186868

    Article  Google Scholar 

  43. Maroto JA, Nieves FJ (2007) Colloidal stability in homo- and hetero-coagulation processes. Comparison between theoretical and experimental data. Trends Colloid Interface Sci IX 98:89–93. https://doi.org/10.1007/bfb0115214

    Article  Google Scholar 

  44. Lazzari S, Jaquet B, Colonna L, Storti G, Lattuada M, Morbidelli M (2015) Interplay between aggregation and coalescence of polymeric particles: experimental and modeling insights. Langmuir 31:9296–9305. https://doi.org/10.1021/acs.langmuir.5b02503

    Article  CAS  PubMed  Google Scholar 

  45. De La Vega JC, Elischer P, Schneider T, Häfeli UO (2013) Uniform polymer microspheres: monodispersity criteria, methods of formation and applications. Nanomedicine 8:265–285

    Article  Google Scholar 

  46. Zhang C, Guo Y, Priestley RD (2011) Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules 44:4001–4006. https://doi.org/10.1021/ma1026862

    Article  CAS  Google Scholar 

  47. Li Y, Lin D, Xu J, Zhou X, Zuo B, Tsui OKC, Zhang W, Wang X (2020) Glass transition temperature of single-chain polystyrene particles end-grafted to oxide-coated silicon. J Chem Phys 152 https://doi.org/10.1063/1.5140627

  48. Perez-de-Eulate NG, Di Lisio V, Cangialos D (2017) Glass transition and molecular dynamics in polystyrene nanospheres by fast scanning calorimetry. ACS Macro Lett. https://doi.org/10.1021/acsmacrolett.7b00484

    Article  PubMed  Google Scholar 

  49. Cho YS, Shin CH, Han S (2016) Dispersion polymerization of polystyrene particles using alcohol as reaction medium. Nanoscale Res Lett. https://doi.org/10.1186/s11671-016-1261-8

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shen S, Sudol ED, El-Aasser MS (2003) Control of particle size in dispersion polymerization of methyl methacrylate. J Polym Sci Part A Polym Chem 31:1393–1402. https://doi.org/10.1002/pola.1993.080310606

    Article  Google Scholar 

  51. Tanrisever T, Okay O, Sonmezoglu IC (1996) Kinetics of emulsifier-free emulsion polymerization of methyl methacrylate. J Appl Polym Sci. https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3%3c485::AID-APP11%3e3.0.CO;2-0

    Article  Google Scholar 

  52. Bagchi P, Gray BV, Birnbaum SM (1979) Preparation of model poly(vinyl toluene) latices and characterization of their surface charge by titration and electrophoresis. J Colloid Interface Sci 69:502–528. https://doi.org/10.1016/0021-9797(79)90140-1

    Article  CAS  Google Scholar 

  53. Hong J, Hong CK, Shim SE (2007) Synthesis of polystyrene microspheres by dispersion polymerization using poly(vinyl alcohol) as a steric stabilizer in aqueous alcohol media. Colloids Surfaces A Physicochem Eng Asp 302:225–233. https://doi.org/10.1016/j.colsurfa.2007.02.027

    Article  CAS  Google Scholar 

  54. Lee KC, Her JH, Kim KJ (2009) Effects of reaction parameters on particle size, molecular weight, and kinetics for dispersion polymerization of n-butyl acrylate. Int J Polym Anal Charact 14:600–616. https://doi.org/10.1080/10236660903225460

    Article  CAS  Google Scholar 

  55. Tuncel A, Tuncel M, Ergun B, Alagöz C, Bahar T (2002) Carboxyl carrying-large uniform latex particles. Colloids Surfaces A Physicochem Eng Asp 197:79–94. https://doi.org/10.1016/S0927-7757(01)00862-7

    Article  CAS  Google Scholar 

  56. Ober CK, Lok KP (1987) Formation of large monodisperse copolymer particles by dispersion polymerization. Macromolecules 20:268–273. https://doi.org/10.1021/ma00168a007

    Article  CAS  Google Scholar 

  57. Zhang X, Shen S, Fan L (2008) Uniform polystyrene particles by dispersion polymerization in different dispersion medium. Polym Bull 61:19–26. https://doi.org/10.1007/s00289-008-0922-x

    Article  CAS  Google Scholar 

  58. Thomson B, Rudin A, Lajoie G (1995) Dispersion copolymerization of styrene and divinylbenzene: synthesis of monodisperse, uniformly crosslinked particles. J Polym Sci Part A Polym Chem 33:345–357. https://doi.org/10.1002/pola.1995.080330301

    Article  CAS  Google Scholar 

  59. Ha ST, Park OO, Im SH (2010) Size control of highly monodisperse polystyrene particles by modified dispersion polymerization. Macromol Res 18:935–943. https://doi.org/10.1007/s13233-010-1008-9

    Article  CAS  Google Scholar 

  60. Li F, Geng C, Yan Q (2013) Growth kinetics of monodisperse polystyrene microspheres prepared by dispersion polymerization. J Polym 2013:1–7. https://doi.org/10.1155/2013/754687

    Article  Google Scholar 

  61. Peng B, Imhof A (2015) Surface morphology control of cross-linked polymer particles via dispersion polymerization. Soft Matter 11:3589–3598. https://doi.org/10.1039/c5sm00606f

    Article  CAS  PubMed  Google Scholar 

  62. Yan Q, Bai Y, Meng Z, Yang W (2008) Precipitation polymerization in acetic acid: synthesis of monodisperse cross-linked poly(divinylbenzene) microspheres. J Phys Chem B 112:6914–6922. https://doi.org/10.1021/jp711324a

    Article  CAS  PubMed  Google Scholar 

  63. Li L, Wu L, Bu Z, Gong C, Li BG, Hungenberg KD (2012) Graft copolymerization of styrene and acrylonitrile in the presence of poly(propylene glycol): kinetics and modeling. Macromol React Eng 6:365–383. https://doi.org/10.1002/mren.201200012

    Article  CAS  Google Scholar 

  64. Pavlyuchenko VN, Ivanchev SS (1981) Emulsion polymerisation of non-polar monomers (development of ideas on kinetics and topochemistry). Russ Chem Rev 50:715–745. https://doi.org/10.1070/RC1981v050n04ABEH002607

    Article  CAS  Google Scholar 

  65. Liu B, Wang Y, Zhang M, Zhang H (2016) Initiator systems effect on particle coagulation and particle size distribution in one-step emulsion polymerization of styrene. Polymers (Basel) 8:1–14. https://doi.org/10.3390/polym8020055

    Article  CAS  Google Scholar 

  66. Liu B, Zhang M, Wu G, Zhang H (2016) Synthesis of large-scale, monodisperse latex particles via one-step emulsion polymerization through in situ charge neutralization. Colloids Surfaces A Physicochem Eng Asp 500:127–136. https://doi.org/10.1016/j.colsurfa.2016.04.035

    Article  CAS  Google Scholar 

  67. Liu S, Liu B, Fu Z, Zhou T, Ren L, Zhang M, Zhang H (2015) Effect of polymer characteristics on particle formation and growth in batch emulsion polymerization. J Dispers Sci Technol 36:1320–1326. https://doi.org/10.1080/01932691.2014.956364

    Article  CAS  Google Scholar 

  68. Song JS, Winnik MA (2005) Cross-linked, monodisperse, micron-sized polystyrene particles by two-stage dispersion polymerization. Macromolecules 38:8300–8307. https://doi.org/10.1021/ma050992z

    Article  CAS  Google Scholar 

  69. Araújo PHH, Pinto JC (2000) Mathematical modeling of dispersion polymerizations study of the styrene polymerization in ethanol. Brazilian J Chem Eng 17:383–393. https://doi.org/10.1590/s0104-66322000000400003

    Article  Google Scholar 

  70. Nikolayev VS, Beysens D, Guenoun P (1996) New hydrodynamic mechanism for drop coarsening. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.76.3144

    Article  PubMed  Google Scholar 

  71. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids. https://doi.org/10.1016/0022-3697(61)90054-3

    Article  Google Scholar 

  72. Kamp J, Villwock J, Kraume M (2017) Drop coalescence in technical liquid/liquid applications: a review on experimental techniques and modeling approaches. Rev Chem Eng 33:1–47. https://doi.org/10.1515/revce-2015-0071

    Article  Google Scholar 

  73. Rusu D, Peuvrel-Disdier E (1999) In situ characterization by small angle light scattering of the shear-induced coalescence mechanisms in immiscible polymer blends. J Rheol (N Y N Y) 43:1391–1409. https://doi.org/10.1122/1.551051

    Article  CAS  Google Scholar 

  74. Liu B, Wang D (2012) High-throughput transformation of colloidal polymer spheres to discs simply via magnetic stirring of their dispersions. Langmuir 28:6436–6440. https://doi.org/10.1021/la300042q

    Article  CAS  PubMed  Google Scholar 

  75. Li K, Stöver HDH (1993) Synthesis of monodisperse poly(divinylbenzene) microspheres. J Polym Sci Part A Polym Chem 31:3257–3263. https://doi.org/10.1002/pola.1993.080311313

    Article  CAS  Google Scholar 

  76. Yamada Y, Sakamoto T, Gu S, Konno M (2005) Soap-free synthesis for producing highly monodisperse, micrometer-sized polystyrene particles up to 6 μm. J Colloid Interface Sci 281:249–252. https://doi.org/10.1016/j.jcis.2004.08.030

    Article  CAS  PubMed  Google Scholar 

  77. Prescott SW, Fellows CM, Gilbert RG (2002) Maximum achievable particle size in emulsion polymerization: modeling of large particle sizes. Macromol Theory Simulations 11:163–170. https://doi.org/10.1002/1521-3919(20020201)11:2%3c163::AID-MATS163%3e3.0.CO;2-6

    Article  CAS  Google Scholar 

  78. Paine AJ (1990) Dispersion polymerization of styrene in polar solvents. I. Grafting mechanism of stabilization by hydroxypropyl cellulose. J Colloid Interface Sci 138:157–169. https://doi.org/10.1016/0021-9797(90)90191-P

    Article  CAS  Google Scholar 

  79. Yabu H (2013) Self-organized precipitation: an emerging method for preparation of unique polymer particles. Polym J 45:261–268

    Article  CAS  Google Scholar 

  80. Hu D, Zheng S (2010) Reaction-induced microphase separation in polybenzoxazine thermosets containing poly(N-vinyl pyrrolidone)-block-polystyrene diblock copolymer. Polymer (Guildf) 51:6346–6354. https://doi.org/10.1016/j.polymer.2010.10.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. G. Okunev and A. V. Matveev for providing their expertise in the use of the cloud service based on the Telegram channel that allows a user to train the neural network on microscopy images.

Funding

Our work was supported by the Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis (project AAAA-A21-121011490008–3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sankova.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12649 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankova, N., Vyvdenko, D., Luzina, E. et al. Polymer particle growth and morphology evolution during dispersion polymerization through optical microscopy. Colloid Polym Sci 300, 625–640 (2022). https://doi.org/10.1007/s00396-022-04972-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-022-04972-4

Keywords

Navigation